摘要:
A semiconductor device employs an asymmetrical buried insulating layer, and a method of fabricating the same. The semiconductor device includes a lower semiconductor substrate. An upper silicon pattern is located on the lower semiconductor substrate. The upper silicon pattern includes a channel region, and a source region and a drain region spaced apart from each other by the channel region. A gate electrode is electrically insulated from the upper silicon pattern and intersects over the channel region. A bit line and a cell capacitor are electrically connected to the source region and the drain region, respectively. A buried insulating layer is interposed between the drain region and the lower semiconductor substrate. The buried insulating layer has an extension portion partially interposed between the channel region and the lower semiconductor substrate.
摘要:
A semiconductor device having a field effect transistor and a method of forming the same are provided. The semiconductor device preferably includes a device active pattern disposed on a predetermined region of the substrate. The gate electrode preferably crosses over the device active pattern, interposed by a gate insulation layer. A support pattern is preferably interposed between the device active pattern and the substrate. The support pattern can be disposed under the gate electrode. A filling insulation pattern is preferably disposed between the device active pattern and the filling insulation pattern. The filling insulation pattern may be disposed under the source/drain region. A device active pattern under the gate electrode is preferably formed of a strained silicon having a lattice width wider than a silicon lattice.
摘要:
Embodiments of the invention include a partially insulated field effect transistor and a method of fabricating the same. According to some embodiments, a semiconductor substrate is formed by sequentially stacking a bottom semiconductor layer, a sacrificial layer, and a top semiconductor layer. The sacrificial layer may be removed to form a buried gap region between the bottom semiconductor layer and the top semiconductor layer. Then, a transistor may be formed on the semiconductor substrate. The sacrificial layer may be a crystalline semiconductor formed by an epitaxial growth technology.
摘要:
A gate structure in a semiconductor device includes a tunnel insulation layer disposed on a substrate, a first charge trapping layer disposed on the tunnel insulation layer, a second charge trapping layer disposed on the first charge trapping layer, a dielectric layer disposed to cover the second charge trapping layer, and a conductive layer pattern disposed on the dielectric layer. The first charge trapping layer includes charge trapping sites for storing charges therein. The second charge trapping layer includes nanocrystals. The semiconductor device including the gate structure may have a sufficiently wide programming/erasing window and an improved data retention capability.
摘要:
A semiconductor device includes a substrate, a plurality of gate structures, a first insulating interlayer pattern, and a second insulation layer pattern. The substrate has an active region and a field region, each of the active region and the field region extends in a first direction, and the active region and the field region are alternately and repeatedly arranged in a second direction substantially perpendicular to the first direction. The gate structures are spaced apart from each other in the first direction, each of the gate structures extends in the second direction. The first insulation layer pattern is formed on a portion of a sidewall of each gate structure. The second insulation layer pattern covers the gate structures and the first insulation layer pattern, and has an air tunnel between the gate structures, the air tunnel extending in the second direction.