摘要:
A method for planarizing a high step-height integrated circuit structure within an integrated circuit. There is first formed upon a semiconductor substrate a high step-height integrated circuit structure. Formed then adjoining the high step-height integrated circuit structure is a patterned Global Planarization Dielectric (GPD) layer. There is then formed upon the exposed surfaces of the semiconductor substrate, the high step-height integrated circuit structure and the patterned Global Planarization Dielectric (GPD) layer a reflowable dielectric layer. Finally, the reflowable dielectric layer is reflowed.
摘要:
The present invention is a method of manufacturing crown shape capacitors in the semiconducter memories. Using a single step etching to farbricate the capacitor in a DRAM cell. The method can form side wall polymers and etching byproductions on the surface of the first polysilicon, using the side wall polymers and the etching byproductions as a mask to form the crown shape capacitors with pillars. Moreover, this present invention can form the crown shape structure and pillars in the same step, the crown shape structure and the pillars increase the surface area of the capacitor. Therefore the present invention will increase the performance of the capacitor.
摘要:
A method for manufacturing a stacked capacitor having fin-shaped electrodes with increased capacitance on a dynamic random access memory (DRAM) cell, was achieved. The invention eliminates the need for a silicon nitride etch stop layer, which is known to cause stress in the substrate and lead to defects. The capacitor bottom electrodes having fin shaped portions is fabricated by depositing a multilayer of alternate layers of silicon oxide and doped polysilicon on a partially completed DRAM device having FETs. After forming, with single masking step, the node contacts to the substrate in the multilayer and depositing another doped polysilicon layer, the polysilicon layers and oxide layer are patterned to form the electrodes. An important feature of this invention is that the patterned multilayer is etched to the silicon oxide layer over the bottom polysilicon layer and then the silicon oxide layer(s) are isotropically etched (e.g. in HF) to form the fin capacitor. The fin structure is then used as a mask to anisotropically etch the bottom polysilicon layer, and thereby complete and electrically isolate the bottom fin-shaped electrodes. The capacitor is completed by forming the inter-electrode dielectric and depositing a top electrode layer.
摘要:
The development of fluorescent bioprobes comprising organic fluorescent compounds that exhibit aggregation induced emission (AIE) properties, methods of producing the same, and their practical applications for in vitro and in vivo bioimaging.
摘要:
This disclosure provides systems, methods, and apparatus related to solar water splitting. In one aspect, a structure includes a plurality of first nanowires, the plurality of first nanowires comprising an n-type semiconductor or a p-type semiconductor. The structure further includes a second nanowire, the second nanowire comprising the n-type semiconductor or the p-type semiconductor, the second nanowire being a different composition than the plurality of first nanowires. The second nanowire includes a first region and a second region, with the first region having a conductive layer disposed thereon, and each of the plurality of first nanowires being disposed on the conductive layer.
摘要:
Flavonoid compounds that are selective for a protein, a portion or a living cell, or a portion of an organism may be used as biological imaging agents. The flavonoid compounds are useful for methods of imaging organisms such as zebrafish embryos and zebra fish. Flavonoid compounds may also be used to detect protein. Advantageously, flavonoids that selectively bind protein, a portion of a living cell, or a portion of an organism may exhibit a florescence “turn-on” mechanism, where the flavonoids that are selectively bound exhibit a florescence response when excited.
摘要:
A mercury-free lead-free button battery includes a negative cap, a cathode material, a gasket ring, a positive can, an anode material, and a diaphragm. The positive can and the negative cap are combined. The gasket ring is clamped between the positive can and the negative cap for separating the positive can from the negative cap. The cathode material is arranged on the bottom of the positive can. The diaphragm is arranged on the cathode material. The anode material is arranged between the negative cap and the diaphragm. A partition unit is arranged between the negative cap and the anode material for separating the anode material from the negative cap and conductively connecting the anode material and the negative cap. The partition unit ensures disconnection between the anode material and the negative cap and therefore safety of the battery by preventing expansion, weeping and even that would otherwise happen.