摘要:
A method of fabrication of a metal oxide semiconductor field effect transistor includes first providing a substrate on which a gate structure is formed. Afterwards, a portion of the substrate is removed to form a first recess in the substrate at both ends of the gate structure. Additionally, a source/drain extension layer is deposited in the first recess and a number of spacers are formed at both ends of the gate structure. Subsequently, a portion of the source/drain extension and the substrate are removed to form a second recess in the source/drain extension and a portion of the substrate outside of the spacer. In addition, a source/drain layer is deposited in the second recess. Because the source/drain extension and the source/drain layer have specific materials and structures, short channel effect is improved and the efficiency of the metal oxide semiconductor field effect transistor is improved.
摘要:
A method of fabrication of a metal oxide semiconductor field effect transistor includes first providing a substrate on which a gate structure is formed. Afterwards, a portion of the substrate is removed to form a first recess in the substrate at both ends of the gate structure. Additionally, a source/drain extension layer is deposited in the first recess and a number of spacers are formed at both ends of the gate structure. Subsequently, a portion of the source/drain extension and the substrate are removed to form a second recess in the source/drain extension and a portion of the substrate outside of the spacer. In addition, a source/drain layer is deposited in the second recess. Because the source/drain extension and the source/drain layer have specific materials and structures, short channel effect is improved and the efficiency of the metal oxide semiconductor field effect transistor is improved.
摘要:
A method of fabrication of a metal oxide semiconductor field effect transistor is disclosed. At first, a substrate on which a gate structure is formed is provided. Afterward, a portion of the substrate is removed to form a first recess in the substrate at both ends of the gate structure. Additionally, a source/drain extension layer is deposited in the first recess and a plurality of spacers are formed at both ends of the gate structure. Subsequently, a portion of the source/drain extension and the substrate are removed to form a second recess in the source/drain extension and a portion of the substrate outside of the spacer. In addition, a source/drain layer is deposited in the second recess. Because the source/drain extension and the source/drain layer have specific materials and structures, short channel effect is improved and the efficiency of the metal oxide semiconductor field effect transistor is improved.
摘要:
A method of fabrication of a metal oxide semiconductor field effect transistor is disclosed. At first, a substrate on which a gate structure is formed is provided. Afterward, a portion of the substrate is removed to form a first recess in the substrate at both ends of the gate structure. Additionally, a source/drain extension layer is deposited in the first recess and a plurality of spacers are formed at both ends of the gate structure. Subsequently, a portion of the source/drain extension and the substrate are removed to form a second recess in the source/drain extension and a portion of the substrate outside of the spacer. In addition, a source/drain layer is deposited in the second recess. Because the source/drain extension and the source/drain layer have specific materials and structures, short channel effect is improved and the efficiency of the metal oxide semiconductor field effect transistor is improved.
摘要:
A method of fabrication of a metal oxide semiconductor field effect transistor includes first providing a substrate on which a gate structure is formed. Afterwards, a portion of the substrate is removed to form a first recess in the substrate at both ends of the gate structure. Additionally, a source/drain extension layer is deposited in the first recess and a number of spacers are formed at both ends of the gate structure. Subsequently, a portion of the source/drain extension and the substrate are removed to form a second recess in the source/drain extension and a portion of the substrate outside of the spacer. In addition, a source/drain layer is deposited in the second recess. Because the source/drain extension and the source/drain layer have specific materials and structures, short channel effect is improved and the efficiency of the metal oxide semiconductor field effect transistor is improved.
摘要:
A method of manufacturing a metal oxide semiconductor is provided. The method includes forming an offset spacer and a disposable spacer around the offset spacer. Then, forming a plurality of epitaxial layers outside the disposable spacer and removing the disposable spacer. In addition, the method includes forming a plurality of source/drain extension areas in the substrate outside the offset spacer and the epitaxial layers. Because the source/drain extension areas are formed after the selective epitaxial growth process, the thermal of the selective epitaxial growth process does not damage the source/drain extension areas.
摘要:
A method of manufacturing a metal oxide semiconductor is provided. The method includes forming an offset spacer and a disposable spacer around the offset spacer. Then, forming a plurality of epitaxial layers outside the disposable spacer and removing the disposable spacer. In addition, the method includes forming a plurality of source/drain extension areas in the substrate outside the offset spacer and the epitaxial layers. Because the source/drain extension areas are formed after the selective epitaxial growth process, the thermal of the selective epitaxial growth process does not damage the source/drain extension areas.
摘要:
This invention relates to prognostic signatures, and compositions and methods for determining the prognosis of cancer in a patient, particularly for colorectal cancer. Specifically, this invention relates to the use of genetic markers for the prediction of the prognosis of cancer, such as colorectal cancer, based on signatures of genetic markers. In various aspects, the invention relates to a method of predicting the likelihood of long-term survival of a cancer patient, a method of determining a treatment regime for a cancer patient, a method of preparing a treatment modality for a cancer patient, among other methods as well as kits and devices for carrying out these methods.
摘要:
An operational amplifier circuit includes a first stage amplifier circuit, a second stage amplifier circuit and a first feedforward circuit. The first stage amplifier circuit is coupled to a first input node for receiving a first input signal and amplifying the first input signal to generate a first amplified signal. The second stage amplifier circuit is coupled to the first stage amplifier circuit for receiving the first amplified signal and amplifying the first amplified signal to generate a first output signal at a first output node. The first feedforward circuit is coupled between the first input node and the second stage amplifier circuit for feeding the first input signal forward to the second stage amplifier circuit.