摘要:
A method is described for fabricating a lightly doped drain MOSFET integrated circuit device which overcomes the peeling problems of refractory metal silicide layers on a polycide gate. The process of this invention has been simplified by not using several of the high thermal cycle process steps believed to be necessary for successfully making a polycide gate lightly doped drain MOS FET integrated circuit. These steps are (1) the thermal oxidation after the polycide etching step, (2) the densification step after the blanket deposition of silicon dioxide layer for the spacer preparation, and (3) the silicon oxide capping of the refractory metal silicide layer after the spacer formation by anisotropically etching. The result is a process that provides a non-peeling polycide gate lightly doped drain MOS FET integrated circuit device.
摘要:
A method of forming a self-aligned trenched contact in the fabrication of an integrated circuit is described. Semiconductor device regions are formed in and on a semiconductor substrate wherein the semiconductor device regions include gate electrodes on the surface of the semiconductor substrate and source/drain regions within the semiconductor substrate. Spacers are formed on the sidewalls of the gate electrodes. A layer of silicon oxide is deposited over the surface of the substrate wherein the silicon oxide contacts the source/drain regions within the substrate between the gate electrodes. The substrate is covered with a layer of photoresist which is patterned to provide an opening over the planned self-aligned trenched contact between the gate electrodes. The silicon oxide is etched away to provide an opening to the silicon substrate using the patterned photoresist and the sidewall spacers as a mask. A trench is etched into the silicon substrate within the opening using the photoresist and the sidewall spacers as a mask to form the self-aligned trenched contact opening. A conducting layer is deposited within the trenched opening to complete the contact in the manufacture of the integrated circuit device.
摘要:
A new method of local oxidation using a multiple process is described. A thin silicon oxide layer is formed over the surface of a silicon substrate. A layer of silicon nitride is deposited overlying the silicon oxide layer. The silicon oxide and silicon nitride layers are patterned to provide openings of the smallest size exposing portions of the silicon substrate to he oxidized and growing field oxide regions within these smallest size openings. The patterning and growing of field oxide regions is repeated for each larger size of opening required. The silicon nitride and silicon oxide layers are removed, thereby completing local oxidation of the integrated circuit.
摘要:
A new method of local oxidation by means of stress-releasing narrow trenches is described. Pad silicon oxide, silicon nitride, and silicon dioxide layers are formed on a silicon substrate. Portions of these layers not covered by a mask are etched away to provide an opening to the silicon substrate where the field oxidation region is to be formed. The silicon substrate is etched into where it is exposed to form a shallow trench within the opening. Silicon dioxide spacers and silicon nitride spacers are formed on the sidewalls of the opening. The silicon substrate is coated with a spin-on-glass layer. The spin-on-glass layer is cured, then etched back so that the spin-on-glass layer remains only within the shallow trench not covered by the spacers. The silicon nitride spacers are stripped away. Narrow trenches are etched into the silicon substrate under the silicon nitride spacers. The silicon dioxide spacers and spin-on-glass layer are removed leaving the opening entirely exposed. Channel-stops are selectively ion implanted through the opening into the substrate underneath the trenches. The silicon substrate is oxidized within the opening wherein the silicon substrate is transformed to silicon dioxide and wherein the silicon dioxide expands to fill the narrow trenches. The narrow trenches act to relieve stress within the silicon substrate. The silicon dioxide expands vertically to provide a fully recessed surface of the field oxidation region.
摘要:
A method for forming MOSFET devices, with an improved polycide gate has been accomplished. The polycide structure, made with metal silicide on polysilicon has a reduced rate of adhesion loss or peeling of the metal silicide from the underlying polysilicon, due to the unique surface of the polysilicon. The desired surface of the polysilicon, that will reduce the peeling phenomena, is a wavy or undulated surface. This is accomplished by either depositing the polysilicon at conditions that result in a hemi-spherical grained surface, or obtaining a similar wavy or undulated surface by treating smooth polysilicon in either phosphoric acid or by anodization in hydrofluoric acid. The adhesion of the subsequent metal silicide to the wavy surface of the polysilicon is improved to a point where peeling of the metal silicide from the underlying polysilicon is eliminated.
摘要:
A method for fabricating a stacked storage capacitor on a dynamic random access memory (DRAM) cell with increased capacitance was accomplished. The stacked capacitor is used with a field effect transistor (FET) as part of a dynamic random access memory (DRAM) cell for storing data in the form of stored charge on the capacitor. The method for making the capacitor involves forming a bottom electrode from a single polysilicon layer having a fin-shaped structure, and then using a second polysilicon layer and a plasma etch back to create a second self-aligned fin-like structure that significantly increases the surface area of the capacitor bottom electrode. The capacitor structure is then completed by forming a thin capacitor dielectric layer on the bottom electrode and depositing a third polysilicon layer to form the top electrode and complete the capacitor with significantly increased capacitance and an economy of processing steps.
摘要:
A method is described for fabricating an integrated circuit in which the gate electrodes and gate dielectric silicon oxide are protected from electrical charge damage during ion implantation. A thin conducting layer is deposited over the pattern of gate electrodes/gate dielectric silicon oxide wherein the conducting layer is grounded to the silicon substrate. The high-dose ion implantation is applied through the conducting layer which layer grounds the electrical charge resulting from the ion implantation, and hence protects the gate electrodes from charge damage. The electron "flood gun" need not be used.
摘要:
A new method of forming a contact opening by using a sacrificial spin-on-glass layer is described. A semiconductor substrate is provided wherein the surface of the substrate has an uneven topography. A glasseous layer is deposited over the uneven surface of the substrate and reflowed at low temperature whereby the glasseous layer will have a trench shaped surface over the planned contact opening area. The glasseous layer is covered with a spin-on-glass layer wherein the spin-on-glass planarizes the surface of the substrate. The spin-on-glass layer is baked and then covered with a uniform thickness layer of photoresist. The photoresist layer is exposed and developed to form the desired photoresist mask for the contact opening. The exposed spin-on-glass and glasseous layers are etched away to provide the contact opening to the semiconductor substrate. The photoresist layer is stripped and the sacrificial spin-on-glass layer is removed to complete the formation of the contact opening in the manufacture of the integrated circuit.
摘要:
Integrated circuit antifuse circuitry is provided. A metal-oxide-semiconductor (MOS) antifuse transistor serves as an electrically-programmable antifuse. In its unprogrammed state, the antifuse transistor is off and has a relatively high resistance. During programming, the antifuse transistor is turned on which melts the underlying silicon and causes a permanent reduction in the transistor's resistance. A sensing circuit monitors the resistance of the antifuse transistor and supplies a high or low output signal accordingly. The antifuse transistor may be turned on during programming by raising the voltage at its substrate relative to its source. The substrate may be connected to ground through a resistor. The substrate may be biased by causing current to flow through the resistor. Current may be made to flow through the resistor by inducing avalanche breakdown of the drain-substrate junction or by producing Zener breakdown of external Zener diode circuitry connected to the resistor.
摘要:
A technique for providing ESD protection for integrated circuit devices with multiple power and/or ground buses is provided. The technique involves using a clamping device that is capable of handling both positive and negative ESD pulses to clamp each power bus, ground bus, and I/O pad within a device to a respective one of the ground buses. Without resorting to exhaustive cross-clamping, this arrangement provides a discharge path for an ESD pulse applied across any combination of power buses, ground buses, and I/O pads during an ESD event.