Abstract:
A light-emitting diode device includes: a substrate; an upper metal film disposed on an upper surface of the substrate, and including a chip-mounting region and a plurality of conductive pad regions; two first light-emitting chips and two second light-emitting chips disposed on the chip-mounting region, the first and second light-emitting chips being disposed alternately, two of the first and second light-emitting chips being opposite to each other; a fluorescent layer coated on the first light-emitting chips; and a lens disposed on the substrate to cover the first and second light-emitting chips and the fluorescent layer.
Abstract:
A light-emitting diode module includes a transparent base, a support and a plurality of light-emitting chips. The base has a plurality of cavities separated from each other by a predetermined distance in order to respectively receive the light-emitting chips to form light-exiting areas. The base has a reflecting portion opposite to the cavities. The reflecting portion is at least one inclined plane for reflecting light that have projected outside walls of the cavities to the peripheral area of the light-emitting areas in order to increase the uniformity of the light source. In addition, the light-emitting chips are arranged to form a line or surface light source of any sizes by adjusting the numbers of the cavity and the light-emitting chips.
Abstract:
A transparent layer and a phosphor layer are covered on the LED chip for increasing light emission efficiency and evenness of the LED. Based on angle-dependent emission strength of the LED chip, the phosphor layer is designed with different thickness or contains different phosphor powder concentration in different section. The lights emitted with different strength from different angle of the LED chip are transformed into uniform compound lights after passing through the phosphor layer that has different thickness or phosphor powder concentration. Micro structures capable of destroying the full reflection occurred on the incident lights are further configured on both the inner and outer surfaces of the phosphor layer to increase the light emission efficiency.
Abstract:
A transparent layer and a phosphor layer are covered on the LED chip for increasing light emission efficiency and evenness of the LED. Based on angle-dependent emission strength of the LED chip, the phosphor layer is designed with different thickness or contains different phosphor powder concentration in different section. The lights emitted with different strength from different angle of the LED chip are transformed into uniform compound lights after passing through the phosphor layer that has different thickness or phosphor powder concentration. Micro structures capable of destroying the full reflection occurred on the incident lights are further configured on both the inner and outer surfaces of the phosphor layer to increase the light emission efficiency.
Abstract:
A light emitting diode (LED) includes an LED chip, a substrate structure, a fluorescence layer, and a lens. The substrate structure includes a cavity. The fluorescence layer covers on the LED chip and is configured in the cavity and covering the LED chip. The lens is installed on the substrate structure. The lens includes a curved lateral wall, a plane at the top, and a conical concave portion at the top center.
Abstract:
A multi-functional back brush includes a brush head having an upper portion provided with a strap, a front end formed with a first opening, a rear end formed with a second opening, an adjustable shaft having a first end engageable with the first and second openings of the brush head, an axle fitted through the center through hole of the adjustable shaft and having an end provided with a disk formed with a plurality of teeth engaged with a circular toothed recess of the adjustable shaft, a handle having a circular end engaged with the second end of the adjustable shaft, a toothed rack mounted on a bottom of the handle, an adjusting block movably engaged with the toothed rack, a T-shaped member fixedly mounted on the circular end of the handle and having a resilient blade engaged with radial partitions of adjustable shaft, a spring fitted within the circular end of the handle, an actuator arranged within the circular end of the handle, a cap threadedly engaged with the circular end of the handle, and a pushbutton fitted within the cap, whereby the brush head can be conveniently adjusted in angular position as desired.
Abstract:
A LED device includes a base structure having a receiving space, a light-emitting chip, an encapsulating structure, and a phosphor layer. The receiving space is defined by an inner bottom surface of the base structure and an inner side wall surrounding the inner bottom surface. The light-emitting chip is mounted on the bottom of the receiving space. The encapsulating structure is filled into the receiving space to cover the light-emitting chip. The phosphor layer is formed on the encapsulating structure. The dimension of the phosphor layer is more than the dimension of the receiving space and less than 1.5 times that of the receiving space, so as to mount on the top surface of the base structure.
Abstract:
A light-emitting diode module includes a transparent base, a support and a plurality of light-emitting chips. The base has a plurality of cavities separated from each other by a predetermined distance in order to respectively receive the light-emitting chips to form light-exiting areas. The base has a reflecting portion opposite to the cavities. The reflecting portion is at least one inclined plane for reflecting light that have projected outside walls of the cavities to the peripheral area of the light-emitting areas in order to increase the uniformity of the light source. In addition, the light-emitting chips are arranged to form a line or surface light source of any sizes by adjusting the numbers of the cavity and the light-emitting chips.
Abstract:
A transparent layer and a phosphor layer are covered on the LED chip for increasing light emission efficiency and evenness of the LED. Based on angle-dependent emission strength of the LED chip, the phosphor layer is designed with different thickness or contains different phosphor powder concentration in different section. The lights emitted with different strength from different angle of the LED chip are transformed into uniform compound lights after passing through the phosphor layer that has different thickness or phosphor powder concentration. Micro structures capable of destroying the full reflection occurred on the incident lights are further configured on both the inner and outer surfaces of the phosphor layer to increase the light emission efficiency.