Abstract:
A network device for processing data includes at least one ingress module for performing switching functions on incoming data, a memory management unit for storing the incoming data in a memory and at least one egress module for transmitting the incoming data to at least one egress port. The memory management unit is configured to receive data at a clock speed for the network device and write the data to the memory using a multiplied clock speed that is a multiple of the clock speed for the network device, read out the data from the memory at the multiplied clock speed and provide the data to the at least one egress module at the clock speed for the network device, where the multiplied clock speed is used to sample the clock speed for the network device to place domains of the multiplied clock speed and the clock speed for the network device in phase.
Abstract:
A network device for processing data includes at least one ingress module for performing switching functions on incoming data, a memory management unit for storing the incoming data in a memory and at least one egress module for transmitting the incoming data to at least one egress port. The memory management unit is configured to receive data at a clock speed for the network device and write the data to the memory using a multiplied clock speed that is a multiple of the clock speed for the network device, read out the data from the memory at the multiplied clock speed and provide the data to the at least one egress module at the clock speed for the network device, where the multiplied clock speed is used to sample the clock speed for the network device to place domains of the multiplied clock speed and the clock speed for the network device in phase.
Abstract:
The present invention is directed to a network device, method and apparatus for processing data. The present invention includes at least one ingress module for performing switching functions on incoming data. The invention further includes a memory management unit (MMU) for storing the incoming data, and at least one egress module for transmitting the incoming data to at least one egress port. Further, in the present invention, the memory management unit further comprises a cell copy count pool (CCP) memory, wherein the CCP determines when a memory cell can be made available.
Abstract:
A network device for processing packets. The network device includes a memory management unit for storing packets and performing resource checks on each packet and an egress module for performing packet modification and transmitting the packet to a destination port. The memory management unit includes a timer for indicating that a free space should be created on a bus slot between the memory management unit and the egress module, wherein the free space is used for transmitting CPU instructions from the memory management unit to the egress module.
Abstract:
A first set of instructions associated with an egress of a datagram may be determined, the first set of instructions identifying a first subset of a second set of instructions, the first subset including multiple individual network identifiers identifying which network portion to transmit a replication of the datagram. Which one of the multiple individual network identifiers corresponds to the datagram may be determined from the first subset of the second set of instructions and may be based on the egress of the datagram, wherein each network identifier corresponds to a different egress. The replication of the datagram may be provided to the egress of the determined network identifier for transmission to the network portion as identified by the determined network identifier corresponding to the datagram.
Abstract:
A method and a system for allocating memory in a memory buffer that is part of a data distribution device. Generally, the allocation of memory is for the purpose of storing datagrams. The method allocates memory in the buffer based, at least partially, on how ingress ports that are operably connected to the memory buffer have previously used the buffer to store datagrams. The system typically includes one or more detectors that monitor how various ingresses into the data distribution device are using and have used the memory buffer.
Abstract:
A method and a system for allocating memory in a memory buffer that is part of a data distribution device. Generally, the allocation of memory is for the purpose of storing datagrams. The method allocates memory in the buffer based, at least partially, on how ingress ports that are operably connected to the memory buffer have previously used the buffer to store datagrams. The system typically includes one or more detectors that monitor how various ingresses into the data distribution device are using and have used the memory buffer.
Abstract:
Disclosed are various embodiments that provide serial replication of multicast packets by performing a first data fetch to fetch first data from a memory buffer, the first data comprising a first packet pointer representing a first packet and a replication number indication a number of times the first packet is to be replicated. Furthermore, various embodiments are directed to performing a second data fetch to fetch second data from a memory buffer, the second data comprising a first packet pointer representing a second packet and serially replicating the first packet and the second packet based at least in part upon the replication number and a predetermined threshold value.
Abstract:
A network device for processing data includes at least one ingress module for performing switching functions on incoming data, a memory management unit for storing the incoming data and at least one egress module for transmitting the incoming data to at least one egress port. The at least one egress module includes an egress scheduling module and multiple queues per each of the at least one egress port. Each of the multiple queues serve data attributable to a class of service, and the egress scheduling module is configured to service a minimum bandwidth requirement for each of the multiple queues and then to service the multiple queues to allow for transmission of a maximum allowable bandwidth through a weighting of each of the multiple queues.
Abstract:
A method and system for processing the signals of a touch panel are provided. Therein, the capacitive values of each sensor on the touch panel are successively taken during a period of time. Then, the average capacitive value of each sensor is calculated for computing estimated touch point coordinates. The distance between each two sets of such coordinates sensed respectively at two sensing time points is calculated. If a distance thus calculated is less than a predetermined distance, the two sets of estimated touch point coordinates corresponding to the distance are defined as valid touch point coordinates. If a series of estimated touch point coordinates are successively defined as valid touch point coordinates for a predetermined number of times, the touch point corresponding to each set of valid touch point coordinates in the series is defined as a valid touch point. Thus, the precision of touch point determination is enhanced.