摘要:
A fuse/anti-fuse structure is provided in which programming of the anti-fuse is caused by an electromigation induced hillock that is formed adjacent to the fuse element. The hillock ruptures a thin diffusion barrier located on the sidewalls of the fuse element and the conductive material within the fuse element diffuses into the adjacent dielectric material. The fuse element includes a conductive material located within a line opening which includes a first diffusion barrier having a first thickness located on sidewalls and a bottom wall of the line opening. The anti-fuse element includes the conductive material located within a combined via and line opening which includes the first diffusion barrier located on sidewalls and a bottom wall of the combined via and line opening and a second diffusion barrier having a second thickness that is greater than the first thickness located on the first diffusion barrier.
摘要:
A fuse/anti-fuse structure is provided in which programming of the anti-fuse is caused by an electromigation induced hillock that is formed adjacent to the fuse element. The hillock ruptures a thin diffusion barrier located on the sidewalls of the fuse element and the conductive material within the fuse element diffuses into the adjacent dielectric material. The fuse element includes a conductive material located within a line opening which includes a first diffusion barrier having a first thickness located on sidewalls and a bottom wall of the line opening. The anti-fuse element includes the conductive material located within a combined via and line opening which includes the first diffusion barrier located on sidewalls and a bottom wall of the combined via and line opening and a second diffusion barrier having a second thickness that is greater than the first thickness located on the first diffusion barrier.
摘要:
An interconnect structure including an alloy liner positioned directly between a diffusion barrier and a Cu alloy seed layer as well as methods for forming such an interconnect structure are provided. The alloy liner of the present invention is formed by thermally reacting a previously deposited diffusion barrier metal alloy layer with an overlying Cu alloy seed layer. During the thermal reaction, the metal alloys from the both the diffusion barrier and the Cu alloys seed layer react forming a metal alloy reaction product between the diffusion barrier and the Cu seed layer.
摘要:
A local interconnect structure is provided in which a tungsten region, i.e., tungsten stud, that is formed within a middle-of-the-line (MOL) dielectric material is not damaged and/or contaminated during a multiple interconnect patterning process. This is achieved in the present disclosure by forming a self-aligned tungsten nitride passivation layer within a topmost surface and upper sidewalls portions of the tungsten region that extend above a MOL dielectric material which includes a first interconnect pattern formed therein. During the formation of the self-aligned tungsten nitride passivation layer, a nitrogen enriched dielectric surface also forms within exposed surface of the MOL dielectric material. A second interconnect pattern is then formed adjacent to, but not connect with, the first interconnect pattern. Because of the presence of the self-aligned tungsten nitride passivation layer on the tungsten region, no damaging and/or contamination of the tungsten region can occur.
摘要:
An interconnect structure that includes a dielectric material having a dielectric constant of about 3.0 or less is provided. This low k dielectric material has at least one conductive material having an upper surface embedded therein. The dielectric material also has a surface layer that is made hydrophobic prior to the formation of the noble metal cap. The noble metal cap is located directly on the upper surface of the at least one conductive material. Because of the presence of the hydrophobic surface layer on the dielectric material, the noble metal cap does not substantially extend onto the hydrophobic surface layer of the dielectric material that is adjacent to the at least one conductive material and no metal residues from the noble metal cap deposition form on this hydrophobic dielectric surface.
摘要:
Alternative methods of fabricating an interconnect structure in which an enhanced diffusion barrier including an in-situ formed metal nitride liner formed between an interconnect dielectric material and an overlying metal diffusion barrier liner are provided. In one embodiment, the method includes forming at least one opening into an interconnect dielectric material. A nitrogen enriched dielectric surface layer is formed within exposed surfaces of the interconnect dielectric material utilizing thermal nitridation. A metal diffusion barrier liner is formed on the nitrogen enriched dielectric surface. During and/or after the formation of the metal diffusion barrier liner, a metal nitride liner forms in-situ in a lower region of the metal diffusion barrier liner. A conductive material is then formed on the metal diffusion barrier liner. The conductive material, the metal diffusion barrier liner and the metal nitride liner that are located outside of the at least one opening are removed to provide a planarized conductive material, a planarized metal diffusion barrier liner and a planarized metal nitride liner, each of which includes an upper surface that is co-planar with the nitrogen enriched dielectric surface layer of the interconnect dielectric material.
摘要:
An interconnect structure is provided that substantially eliminates electro-migration (EM) damage, a design structure and a method of manufacturing. The metal interconnect is formed in a dielectric material. A metal cap is selective to the metal interconnect. The metal cap includes RuX, where X is at Boron, Phosphorous or a combination of Boron and Phosphorous.
摘要:
An interconnect structure including a gouging feature at the bottom of a via opening and a method of forming the same are provided. The method of the present invention does not disrupt the coverage of the deposited trench diffusion barrier in a line opening that is located atop the via opening, and/or does not introduce damages caused by creating a gouging feature at the bottom of the via opening by sputtering into the interconnect dielectric material that includes the via and line openings. Such an interconnect structure is achieved by providing a gouging feature in the bottom of the via opening by first forming the line opening within the interconnect dielectric, followed by forming the via opening and then the gouging feature.
摘要:
An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.
摘要:
An interconnect structure having reduced electrical resistance and a method of forming such an interconnect structure are provided. The interconnect structure includes a dielectric material including at least one opening therein. The at least one opening is filled with an optional barrier diffusion layer, a grain growth promotion layer, an agglomerated plating seed layer, an optional second plating seed layer a conductive structure. The conductive structure which includes a metal-containing conductive material, typically Cu, has a bamboo microstructure and an average grain size of larger than 0.05 microns. In some embodiments, the conductive structure includes conductive grains that have a (111) crystal orientation.