Abstract:
The present invention provides a display panel including a plurality of dual-gate pixel units connected to each other through data lines, gate lines and common lines. Each dual-gate pixel unit includes a first pixel and a second pixel respectively connected to a first gate line and a second gate line, and shares a common line and a data line. The first pixel and the second pixel are respectively disposed at two opposite sides of the common line, and they are also respectively disposed at two opposite sides of the first data line and the second gate line. The data lines transfer data signals into pixels, and the gate lines control the pixels to receive the data signals. The present invention raises an aperture ratio of each pixel of the display panel, and reduces the probability of the gate line and the common line being short-circuited.
Abstract:
The present invention provides a display panel including a plurality of dual-gate pixel units connected to each other through data lines, gate lines and common lines. Each dual-gate pixel unit includes a first pixel and a second pixel respectively connected to a first gate line and a second gate line, and shares a common line and a data line. The first pixel and the second pixel are respectively disposed at two opposite sides of the common line, and they are also respectively disposed at two opposite sides of the first data line and the second gate line. The data lines transfer data signals into pixels, and the gate lines control the pixels to receive the data signals. The present invention raises an aperture ratio of each pixel of the display panel, and reduces the probability of the gate line and the common line being short-circuited.
Abstract:
A system for displaying images is disclosed. A display panel comprises a first substrate and a second substrate with a liquid crystal layer interposed therebetween. A sealant is interposed between the first substrate and a second substrate for sealing the liquid crystal layer. A dielectric layer is overlying the first substrate. Metal lines are overlying the dielectric layer under and/or near the sealant. A planarization layer covers and contacts the dielectric layer and the metal lines to form a first interface between the metal lines and the planarization layer and a second interface between the dielectric layer and the planarization layer. Bridge lines without contacting the planarization layer are disposed under and/or near the sealant, instead of at least a portion of the metal lines contacting the planarization layer.
Abstract:
A method for processing a lens barrel includes the steps of: (a) providing a processing device including a processing shaft and a cutting tool; (b) moving the lens barrel and the processing shaft relative to each other so that an image of the cutting tool projected on a plane that intersects a tubular wall of the lens barrel is orthogonal to the tubular wall; (c) moving the processing shaft relative to the lens barrel so that the cutting tool is close to the tubular wall; (d) moving the processing shaft relative to the lens barrel so that the cutting tool is in touch with the tubular wall; (e) moving the processing shaft and the lens barrel relative to each other so that the lens barrel is formed with a continuous groove on the tubular wall; and (f) moving the cutting tool away from the lens barrel.
Abstract:
A layout of a printed circuit board adaptive to be bonded to an integrated circuit device is introduced here. The layout includes a first metal layer, disposed in a first insulation layer and a second metal layer, disposed in a second insulation layer over the first insulation layer. The first metal layer and the second metal layer are connected to each other through a plurality of contact hole filled with conductive materials and are arranged to be substantially parallel to each other throughout a pad structure region and a line structure region of the printed circuit. The connected first metal layer and second metal layer are used for a signal path from the printed circuit board to the bonded integrated circuit device to improve driving ability of power supply.
Abstract:
A fuel cell, including a fuel cell core component having an anode current collection portion, at least one membrane electrode assembly, and a cathode current collection portion stacked in a sequential manner; a casing, made of a plastic material for surrounding the fuel cell core component therein.
Abstract:
A method for processing a lens barrel includes the steps of: (a) providing a processing device including a processing shaft and a cutting tool; (b) moving the lens barrel and the processing shaft relative to each other so that an image of the cutting tool projected on a plane that intersects a tubular wall of the lens barrel is orthogonal to the tubular wall; (c) moving the processing shaft relative to the lens barrel so that the cutting tool is close to the tubular wall; (d) moving the processing shaft relative to the lens barrel so that the cutting tool is in touch with the tubular wall; (e) moving the processing shaft and the lens barrel relative to each other so that the lens barrel is formed with a continuous groove on the tubular wall; and (f) moving the cutting tool away from the lens barrel.
Abstract:
Disclosed herein is a solar cell, which includes a substrate, a photoactive member and a two dimensional photonic crystal. The photoactive member is disposed on a surface of the substrate. The two dimensional photonic crystal is disposed on the surface of the substrate and adjacent to the photoactive member such that a light propagated from the photoactive member is reflected back to the photoactive member.
Abstract:
A solar module array includes a plurality of solar cell modules. Each solar cell module includes a solar cell panel and a metal frame for securing the solar cell panel. The metal frame includes an upper horizontal member, a lower horizontal member and a vertical member. The upper horizontal member is for holding the solar cell panel. The vertical member is interconnected between the upper and lower horizontal members, and a set of bolt and nut electrically connect any adjacent-two vertical members. In an alternate way, the auxiliary member extends from the vertical member, and a set of bolt and nut electrically connect two overlapped auxiliary members of any adjacent-two vertical members.
Abstract:
A system for displaying images. The system comprises a transflective liquid crystal display (LCD) panel comprising lower and upper substrates opposing each other and a liquid crystal layer disposed therebetween. The lower substrate comprises reflective and transmissive regions. A stack of a protective layer, a transparent electrode and a reflective electrode is disposed on the lower substrate of the reflective and transmissive regions. The reflective electrode comprises an opening corresponding to the transmissive region to substantially expose the underlying transparent electrode. A transparent dielectric layer is disposed on the surface of the upper substrate facing and corresponding to the lower substrate of the reflective region.