摘要:
A method is described to fabricate RF inductor devices on a silicon substrate. Low-k or other dielectric material is deposited and patterned to form inductor lower plate trenches. Trenches are lined with barrier film such as TaN, filled with copper, and excess metal planarized using chemical mechanical polishing (CMP). Second layer of a dielectric material is deposited and patterned to form via-hole/trenches. Via-hole/trench patterns are filled with barrier material, and the dielectric film in between the via-hole/trenches is etched to form a second set of trenches. These trenches are filled with copper and planarized. A third layer of a dielectric film is deposited and patterned to form via-hole/trenches. Via-hole/trenches are then filled with barrier material, and the dielectric film between via-hole/trench patterns etched to form a third set of trenches. These trenches are filled with copper metal and excess metal removed by CMP to form said RF inductor.
摘要:
An improved new process for fabricating multilevel interconnected vertical channels and horizontal channels or tunnels. The method has broad applications in semiconductors, for copper interconnects and inductors, as well as, in the field of bio-sensors for mini- or micro-columns in gas or liquid separation, gas/liquid chromatography, and in capillary separation techniques. In addition, special techniques are described to deposit by atomic layer deposition, ALD, a copper barrier layer and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a type of damascene process, to form copper interconnects and inductors.
摘要:
A CMOS RF device and a method to fabricate said device with low gate contact resistance are described. Conventional MOS transistor is first formed with isolation regions, poly-silicon gate structure, sidewall spacers around poly gate, and implanted source/drain with lightly and heavily doped regions. A silicon dioxide layer such as TEOS is deposited, planarized with chemical mechanical polishing (CMP) to expose the gate and treated with dilute HF etchant to recess the silicon dioxide layer below the surface of the gate. Silicon nitride is then deposited and planarized with CMP and then etched except around the gates, using a oversize poly-silicon gate mask. Inter-level dielectric mask is then deposited, contact holes etched, and contact metal is deposited to form the transistor. During contact hole etch over poly-silicon gate, silicon nitride around the poly gate acts as an etch stop. Resulting structure with direct gate contact achieves significantly reduced gate resistance and thereby improved noise performance at high frequency operation, increased unit power gain frequency (f.,), and reduced gate delay.
摘要:
A method is described to fabricate RF inductor devices on a silicon substrate. Low-k or other dielectric material is deposited and patterned to form inductor lower plate trenches. Trenches are lined with barrier film such as TaN, filled with copper, and excess metal planarized using chemical mechanical polishing (CMP). Second layer of a dielectric material is deposited and patterned to form via-hole/trenches. Via-hole/trench patterns are filled with barrier material, and the dielectric film in between the via-hole/trenches is etched to form a second set of trenches. These trenches are filled with copper and planarized. A third layer of a dielectric film is deposited and patterned to form via-hole/trenches. Via-hole/trenches are then filled with barrier material, and the dielectric film between via-hole/trench patterns etched to form a third set of trenches. These trenches are filled with copper metal and excess metal removed by CMP to form said RF inductor.
摘要:
A first method of reducing semiconductor device substrate effects comprising the following steps. O+or O2+are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices. A second method of reducing substrate effects under analog devices includes forming an analog device on a SOI substrate and then selectively etching the silicon oxide layer of the SOI substrate to form a channel at least partially underlying the analog device.
摘要:
A first method of reducing semiconductor device substrate effects comprising the following steps. O+ or O2+ are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices. A second method of reducing substrate effects under analog devices includes forming an analog device on a SOI substrate and then selectively etching the silicon oxide layer of the SOI substrate to form a channel at least partially underlying the analog device.
摘要翻译:降低半导体器件衬底效应的第一种方法包括以下步骤。 O +或O 2 +被选择性地注入到硅衬底中以形成硅损坏的氧化硅区域。 在硅衬底附近,在至少一个上部电介质层内的硅损坏的氧化硅区域附近形成一个或多个器件。 在所述至少一个上介电层上形成钝化层。 图案化钝化层和至少一个上电介质层以形成在硅损坏的氧化硅区域上暴露硅衬底的一部分的沟槽。 选择性地蚀刻硅损坏的氧化硅区域以形成与沟槽连续且邻接的沟道,由此沟道减小了一个或多个半导体器件的衬底效应。 减少模拟器件下的衬底效应的第二种方法包括在SOI衬底上形成模拟器件,然后选择性地蚀刻SOI衬底的氧化硅层,以形成至少部分在模拟器件下面的沟道。
摘要:
A CMOS RF device and a method to fabricate said device with low gate contact resistance are described. Conventional MOS transistor is first formed with isolation regions, poly-silicon gate structure, sidewall spacers around poly gate, and implanted source/drain with lightly and heavily doped regions. A silicon dioxide layer such as TEOS is deposited, planarized with chemical mechanical polishing (CMP) to expose the gate and treated with dilute HF etchant to recess the silicon dioxide layer below the surface of the gate. Silicon nitride is then deposited and planarized with CMP and then etched except around the gates, using a oversize poly-silicon gate mask. Inter-level dielectric mask is then deposited, contact holes etched, and contact metal is deposited to form the transistor. During contact hole etch over poly-silicon gate, silicon nitride around the poly gate acts as an etch stop. Resulting structure with direct gate contact achieves significantly reduced gate resistance and thereby improved noise performance at high frequency operation, increased unit power gain frequency (fmax), and reduced gate delay.
摘要:
An improved method to deposit, by atomic layer deposition, ALD, a copper barrier and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a damascene process, for the fabrication of interconnects and inductors, has been developed. A process flow outlining the method of the present invention is as follows: (1) formation of trenches and channels, (2) atomic layer deposition of copper barrier and seed, (3) electroless deposition of copper, (4) chemical mechanical polishing back of excess copper, and (5) barrier deposition, SiN, forming copper interconnects and inductors.
摘要:
A first method of reducing semiconductor device substrate effects comprising the following steps. O+or O2+are selectively implanted into a silicon substrate to form a silicon-damaged silicon oxide region. One or more devices are formed over the silicon substrate proximate the silicon-damaged silicon oxide region within at least one upper dielectric layer. A passivation layer is formed over the at least one upper dielectric layer. The passivation layer and the at least one upper dielectric layer are patterned to form a trench exposing a portion of the silicon substrate over the silicon-damaged silicon oxide region. The silicon-damaged silicon oxide region is selectively etched to form a channel continuous and contiguous with the trench whereby the channel reduces the substrate effects of the one or more semiconductor devices. A second method of reducing substrate effects under analog devices includes forming an analog device on a SOI substrate and then selectively etching the silicon oxide layer of the SOI substrate to form a channel at least partially underlying the analog device.
摘要翻译:降低半导体器件衬底效应的第一种方法包括以下步骤。 O +或O 2 +被选择性地注入到硅衬底中以形成硅损坏的氧化硅区域。 在硅衬底附近,在至少一个上部电介质层内的硅损坏的氧化硅区域附近形成一个或多个器件。 在所述至少一个上介电层上形成钝化层。 图案化钝化层和至少一个上电介质层以形成在硅损坏的氧化硅区域上暴露硅衬底的一部分的沟槽。 选择性地蚀刻硅损坏的氧化硅区域以形成与沟槽连续且邻接的沟道,由此沟道减小了一个或多个半导体器件的衬底效应。 减少模拟器件下的衬底效应的第二种方法包括在SOI衬底上形成模拟器件,然后选择性地蚀刻SOI衬底的氧化硅层,以形成至少部分在模拟器件下面的沟道。
摘要:
A method to form elevated source/drain (S/D) over staircase shaped openings in insulating layers. A gate structure is formed over a substrate. The gate structure is preferably comprised of a gate dielectric layer, gate electrode, first spacers, and hard mask. A first insulating layer is formed over the substrate and the gate structure. A resist layer is formed having an opening over the gate structure and over a lateral area adjacent to the gate structure. We etch the insulating layer through the opening in the resist layer. The etching removes a first thickness of the insulating layer to form a source/drain (S/D) opening. We remove the first spacers and hardmask to form a source/drain (S/D) contact opening. We implant ions into the substrate through the source/drain (S/D) contact opening to form lightly doped drain regions. We form second spacers on the sidewalls of the gate electrode and the gate dielectric and on the sidewalls of the insulating layer in the source/drain (S/D) contact opening and the source/drain (S/D) opening. A conductive layer is deposited over the gate electrode, the insulating layer. The conductive layer is planarized to exposed the insulating layer to form elevated source/drain (S/D) blocks on a staircase shape insulating layer.