摘要:
A reticle (10) permits the alignment of three orthogonal axes (X, Y and Z) that intersect at a common target point (30). Thin, straight filaments (12, 14 and 16) are supported on a frame (20). The filaments are each contained in a different orthogonal plane (S.sub.xy, S.sub.xz, and S.sub.yz) and each filament intersects two of the three orthogonal axes. The filaments, as viewed, along the frame axis (22), give the appearance of a triange (24) with a V (17) extending from each triangle vertex (25, 26, and 27). When axial alignment is achieved, the filament portions adjacent to a triangle vertex are seen (along the axis of interest) as a right-angle cross, whereas these filament portions are seen to intersect at an oblique angle when axial misalignment occurs. The reticle is open in the region near the target point leaving ample space for alignment aids such as a pentaprism 54 or a cube mirror 41.
摘要:
Replacement metal gates may be formed by removing a polysilicon layer from a gate structure. The gate structure may be formed by patterning the polysilicon layer and depositing a spacer layer over the gate structure such that the spacer layer has a first polish rate. The spacer layer is then etched to form a sidewall spacer. An interlayer dielectric is applied over the gate structure with the sidewall spacer. The interlayer dielectric has a second polish rate higher than the first polish rate. A hard mask may also be applied over the gate structure and implanted so that the hard mask may be more readily removed.
摘要:
A semiconductor device and a method for forming it are described. The semoiconductor device comprises a metal NMOS gate electrode that is formed on a first part of a substrate, and a silicide PMOS gate electrode that is formed on a second part of the substrate.
摘要:
At least a p-type and n-type semiconductor device deposited upon a semiconductor wafer containing metal or metal alloy gates. More particularly, a complementary metal-oxide-semiconductor (CMOS) device is formed on a semiconductor wafer having n-type and p-type metal gates.
摘要:
The present invention relates to the deposition of a layer above a transistor structure, causing crystalline stress within the transistor, and resulting in increased performance. The stress layer may be formed above a plurality of transistors formed on a substrate, or above a plurality of selected transistors.
摘要:
A wafer handling wand allows the efficient loading and unloading of semiconductor wafers to and from a CMP apparatus. The wand includes identical work piece gripping, alignment, and loading/unloading mechanisms on the top and bottom sides. A processed wafer can be unloaded from the apparatus onto one side of the wand and an unprocessed wafer can be loaded into the apparatus from the second side. The gripping mechanism includes a support area and a spaced apart moveable gripping finger. Wafer loading is facilitated by a cam attached to the support area that rotates when the cam contacts the apparatus. Upon rotation, the cam provides a surface for directing the work piece into the apparatus. The surface of the cam also includes an alignment aid that can be brought into contact with a reference surface on the apparatus to insure proper alignment between the wand and the apparatus.
摘要:
A complementary metal oxide semiconductor integrated circuit may be formed with a PMOS device formed using a replacement metal gate and a raised source drain. The raised source drain may be formed of epitaxially deposited silicon germanium material that is doped p-type. The replacement metal gate process results in a metal gate electrode and may involve the-removal of a nitride etch stop layer.
摘要:
A method for making a semiconductor device is described. That method comprises forming a first dielectric layer on a substrate, then forming a trench within the first dielectric layer. After forming a second dielectric layer on the substrate, a first metal layer is formed within the trench on a first part of the second dielectric layer. A second metal layer is then formed on the first metal layer and on a second part of the second dielectric layer.
摘要:
A method of fabricating microelectronic structure using at least two material removal steps, such as for in a poly open polish process, is disclosed. In one embodiment, the first removal step may be chemical mechanical polishing (CMP) step utilizing a slurry with high selectivity to an interlevel dielectric layer used relative to an etch stop layer abutting a transistor gate. This allows the first CMP step to stop after contacting the etch stop layer, which results in substantially uniform “within die”, “within wafer”, and “wafer to wafer” topography. The removal step may expose a temporary component, such as a polysilicon gate within the transistor gate structure. Once the polysilicon gate is exposed other processes may be employed to produce a transistor gate having desired properties.
摘要:
A method for making a semiconductor device is described. That method comprises forming a dielectric layer on a substrate, forming a trench within the dielectric layer, and forming a high-k gate dielectric layer within the trench. After forming a first metal layer on the high-k gate dielectric layer, a second metal layer is formed on the first metal layer. At least part of the second metal layer is removed from above the dielectric layer using a polishing step, and additional material is removed from above the dielectric layer using an etch step.