摘要:
A smart label printing system and method for printing smart labels is provided. The smart label printing system enables the expedited programming of the RFID tag component of the smart label so that delays due to the unequal time between printing the exterior of the smart label and encoding the smart label are avoided. The smart label printing system comprises a thermal printing unit to print the exterior of the smart label as well as an RF driver to program the RFID tag embedded inside the smart label. Methods are provided to increase overall throughput speed of the smart label, including prioritizing RFID tag data over exterior printing data in a RAM, compressing RFID tag data sent from a host computer, pre-loading fixed and regularly varying data, and predicting variable unknown data through the use of an artificial intelligence model. In addition, methods for uniquely arranging programming antennas and media pathways which act to speed up overall programming speed are also provided.
摘要:
Gaseous particles or gas-entrained particles may be conveyed by electric fields acting on charged species included in the gaseous or gas-entrained particles.
摘要:
A heat exchange system includes an electrode configured to electrostatically control a flow of a heated gas stream in the vicinity of a heat transfer surface and/or a heat-sensitive surface.
摘要:
An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
摘要:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
摘要:
Energy storage devices for storing energy are provided. An energy storage device includes a flywheel disposed in a chamber of a journal. A gas bearing is formed between an outer face of the flywheel and an inner face of the journal. The gas bearing exerts a compressive force on the flywheel, which allows for higher rotational velocities and higher energy storage.
摘要:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
摘要:
A scanned beam imager or laser scanner is operable to scan an object moving through its field-of-view. The system may include means for detecting direction and/or speed of the object. The velocity detection means may include sensors, an interface for receiving velocity information from other system elements, or image analysis that examines the skew, stretch, or compression in images. Responsive to object movement direction and speed, the scanned beam imager may alter its pixel capture rate and/or its scan rate to compensate. Alternatively or in combination, the imager may perform software-based image motion compensation. In some embodiments, the system may allow the image capture region to pace objects moving rapidly through its field-of-view.
摘要:
A scanning endoscope, amenable to both rigid and flexible forms, scans a beam of light across a field-of-view, collects light scattered from the scanned beam, detects the scattered light, and produces an image. The endoscope may comprise one or more bodies housing a controller, light sources, and detectors; and a separable tip housing the scanning mechanism. The light sources may include laser emitters that combine their outputs into a polychromatic beam. Light may be emitted in ultraviolet or infrared wavelengths to produce a hyperspectral image. The detectors may be housed distally or at a proximal location with gathered light being transmitted thereto via optical fibers. A plurality of scanning elements may be combined to produce a stereoscopic image or other imaging modalities. The endoscope may include a lubricant delivery system to ease passage through body cavities and reduce trauma to the patient. The imaging components are especially compact, being comprised in some embodiments of a MEMS scanner and optical fibers, lending themselves to interstitial placement between other tip features such as working channels, irrigation ports, etc.
摘要:
Aspects of the subject matter described herein relate to attributing light emissions to spots a light was scanned over. In aspects, the scanned light includes light capable of increasing light emissions from at least one type of matter. A detector detects emitted light that comes from spots the light was previously scanned over. Circuitry attributes emitted light with spots within the area. Data representing light that reflects from each spot may be combined with data representing light that emits (if any) from each spot to create an image. The emitted light may be assigned a false color in the image to distinguish it from reflected light in the image. Emitted light may occur as a result of fluorescent activity. Other aspects are described in the specification.