摘要:
A device comprising an array of sensors that are reconfigurable by means of a switching network. The sensors may be optical, thermal or pressure sensors or ultrasonic transducers. More specifically, the device comprises: a multiplicity of sensor elements; a plurality of bus lines; a set of access switches for selectively connecting a set of the sensor elements in a row to a bus line, one of the access switches being connected to a first sensor element; a multiplicity of sets of matrix switches, each of the sets of matrix switches selectively connecting a respective sensor element of the multiplicity of sensor elements to a respective set of adjacent sensor elements, one of the matrix switches being connected to the first sensor element and to a second sensor element that is not a member of the set of sensor elements; and control circuitry that controls the access switches and the matrix switches in accordance with a selected switching configuration such that the first sensor element is connected to the bus line via said one access switch, while at the same time the second sensor element is connected to said one access switch via said one matrix switch.
摘要:
The reconfigurable ultrasound array disclosed herein is one that allows groups of subelements to be connected together dynamically so that the shape of the resulting element can be made to match the shape of the wave front. This can lead to improved performance and/or reduced channel count. Reconfigurability can be achieved using a switching network. A methodology and an algorithm are disclosed that allows the performance of this switching network to be improved by properly choosing the configuration of the switching network.
摘要:
A reconfigurable linear array of sensors (e.g., optical, thermal, pressure, ultrasonic). The reconfigurability allows the size and spacing of the sensor elements to be a function of the distance from the beam center. This feature improves performance for imaging systems having a limited channel count. The improved performance, for applications in which multiple transmit focal zones are employed, arises from the ability to adjust the aperture for a particular depth.
摘要:
A method of making a capacitive micromachined ultrasound transducer cell is provided. The method includes providing a carrier substrate, where the carrier substrate comprises glass. The step of providing the glass substrate may include forming vias in the glass substrate. Further, the method includes providing a membrane such that at least one of the carrier substrate, or the membrane comprises support posts, where the support posts are configured to define a cavity depth. The method further includes bonding the membrane to the carrier substrate by using the support posts, where the carrier substrate, the membrane and the support posts define an acoustic cavity.
摘要:
The present technique provides for the manufacture and/or use of an ultrasound probe configured to acquire non-imaging data in addition to imaging data. In particular, the ultrasound probe includes a micro-machined ultrasound transducer formed on the surface of a substrate using micro-electric mechanical systems techniques or other techniques associated with semiconductor processing. Non-imaging sensors are formed on the substrate, either on the surface or the interior, or on a substrate proximate to the substrate upon which the transducer is formed. The non-imaging sensors may be used to acquire non-imaging data in conjunction with the acquisition of imaging data by the transducer.
摘要:
A continuous, non-invasive fetal heart rate measurement is produced using an ultrasound probe positioned on the abdomen of the mother. The ultrasound probe includes a plurality of ultrasound transducers that are positioned within a housing having a transmission surface. The transmission surface is configured to defocus the individual ultrasound beams created by the plurality of ultrasound transducers. The transmission surface defocuses the ultrasound beam and creates a wider area of coverage for the ultrasound probe. The controller contained within the heart rate monitor selectively activates different combinations of the plurality of ultrasound transducers to reduce the signal-to-noise ratio while allowing the ultrasound probe to locate the fetal heart beat and subsequently increase the signal-to-noise ratio during continuous heart rate monitoring.
摘要:
A curved sensor device, such as an ultrasonic transducer array, is fabricated from a flat micromachined sensor (such as cMUT or pMUT) array constructed using micromachined electromechanical systems (MEMS) techniques. The device comprises: a support structure comprising a spine having a profile that is generally curved and a multiplicity of teeth extending from one side of the curved spine; and a multiplicity of sensors built on the support structure. The spine can be bent forward or backward and attached to a curved front face of a support member, thereby causing the sensors to adopt a curved array.
摘要:
A system for guiding probe is presented. The system includes a probe configured to acquire image data representative of a region of interest. Additionally, the system includes an imaging system in operative association with the probe and configured to facilitate guiding the probe to a desirable location based on the acquired image data and indications of change in position of the probe.
摘要:
An ultrasonic transducer device comprising: an ultrasonic transducer array micromachined on a substrate; flexible electrical connections connected to the transducer array; and a body of acoustically attenuative material that supports the substrate and the flexible electrical connections. The acoustic backing material may contain additional features, such as tabs or notches, for use in positioning the transducer on fixtures during manufacturing or positioning the transducer within a housing during final assembly. Tabs or other features that are used only during manufacturing may be subsequently removed from the device. The MUT device itself may also be thinned so as to provide flexibility as desired. The backing material is preferably matched in acoustic impedance to the silicon wafer so as to prevent reflection at the interface of any acoustic energy propagating rearward, i.e., in the direction away from the device front surface. The backing material may also possess a high thermal conductivity to assist in removal of heat from the device.
摘要:
A capacitive micromachined ultrasound transducer (cMUT) cell is presented. The cMUT cell includes a lower electrode. Furthermore, the cMUT cell includes a diaphragm disposed adjacent to the lower electrode such that a gap having a first gap width is formed between the diaphragm and the lower electrode, wherein the diaphragm comprises one of a first epitaxial layer or a first polysilicon layer. In addition, a stress reducing material is disposed in the first epitaxial layer.