摘要:
A method of making a capacitive micromachined ultrasound transducer cell is provided. The method includes providing a carrier substrate, where the carrier substrate comprises glass. The step of providing the glass substrate may include forming vias in the glass substrate. Further, the method includes providing a membrane such that at least one of the carrier substrate, or the membrane comprises support posts, where the support posts are configured to define a cavity depth. The method further includes bonding the membrane to the carrier substrate by using the support posts, where the carrier substrate, the membrane and the support posts define an acoustic cavity.
摘要:
A radiation detector is provided that provides fast sequential image acquisition. In one embodiment, the radiation detector a diode capacitor that is charged in response to a radiation exposure event. The charge stored in the diode capacitor is transferred to a separate storage capacitor, allowing a new charge to be generated and stored at the diode capacitor.
摘要:
A functional block for assembly includes at least one element and a patterned magnetic film comprising at least one magnetic region attached to the element. A wafer includes a host substrate comprising a number of elements. The wafer further includes a patterned magnetic film attached to the elements and comprising a number of magnetic regions. The magnetic regions are attached to respective ones of the elements. A method of manufacture includes forming a number of magnetic regions on a host substrate having an array of elements. The forming step provides at least one of the magnetic regions for a respective group comprising at least one of the elements.
摘要:
Storage capacitor design for a solid state imager. The imager includes several pixels disposed on a substrate in an imaging array pattern. Each pixel includes a photosensor coupled to a thin film switching transistor. Several scan lines are disposed at a first level with respect to the substrate along a first axis and several data lines are disposed at a second level along a second axis of the imaging array. Several data lines disposed at a second level with respect to the substrate along a second axis of the imaging array pattern. Each pixel comprises a storage capacitor coupled parallel to the photosensor, the storage capacitor comprising a storage capacitor electrode and a capacitor common electrode.
摘要:
Storage capacitor design for a solid state imager. The imager includes several pixels disposed on a substrate in an imaging array pattern. Each pixel includes a photosensor coupled to a thin film switching transistor. Several scan lines are disposed at a first level with respect to the substrate along a first axis and several data lines are disposed at a second level along a second axis of the imaging array. Several data lines disposed at a second level with respect to the substrate along a second axis of the imaging array pattern. Each pixel comprises a storage capacitor coupled parallel to the photosensor, the storage capacitor comprising a storage capacitor electrode and a capacitor common electrode.
摘要:
A method for fabricating a radiation detector including at least one Thin Film Transistor (TFT) includes forming a low resistance data line strap unitary with a light block element on the TFT.
摘要:
An imager includes a substrate, a light-sensitive imaging array on the substrate, a scintillator over the array, and a cover over the scintillator sealed to the substrate. An edge of the array is situated close to an edge of the substrate relative to other edges of the array and substrate. A U-shaped end cap is sealed to and covers an edge of the cover, the edge of the substrate and a portion of each of the cover and substrate inward from their respective edges.
摘要:
A radiation imager is disclosed that is resistant to degradation due to moisture by either contact pad corrosion, guard ring corrosion or by photodiode leakage. A contact pad of a large area imager is disclosed that is formed into three distinct and electrically connected regions. The resulting structure of the contact pad regions forms reliable contact that is resistant to corrosion damage. Also disclosed is a data line of an imager, or a display, the resistance of which is reduced by patterning an aluminum (Al) line on top of a transistor island structure, with the formed data line preferably being encapsulated. In addition, a guard ring having first and second regions and photosensitive element are disclosed. The second region comprises an electrical contact between ITO and underlying metal and a second tier which acts as a moisture barrier and is preferably disposed at the corner of the guard ring and separated from the contact pads of the imager in such a manner as to minimize corrosion. The photosensitive element has a multitier passivation layer disposed between the top contact layer and an amorphous silicon photosensor island except for a selected contact area on the top surface of the photosensor island, where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The passivation layer includes a first tier inorganic barrier layer which is disposed at least over the sidewalls of the photosensor island.
摘要:
A radiation imager includes a photosensor barrier layer disposed between an amorphous silicon photosensor array and the scintillator. The barrier layer includes two strata, the first stratum being silicon oxide disposed over the upper conductive layer of the photosensor array and the second stratum is silicon nitride that is disposed over the first stratum. The photosensor barrier layer has a shape that substantially conforms to the the shape of the underlying upper conductive layer and has a maximum thickness of about 3 microns. The silicon oxide and silicon nitride are deposited in a vapor deposition process at less than about 250.degree. C. using tetraethoxysilane (TEOS) as the silicon source gas.
摘要:
A solid state radiation imager pixel having a thin film transistor (TFT) coupled to a photodiode in which the photodiode and the TFT each comprise a common dielectric layer, that is, a single dielectric layer that extends across the pixel and that has a gate dielectric layer portion and a photodiode body passivation portion. The common dielectric layer comprises a monolithic dielectric material such as silicon nitride or silicon oxide. Further, the bottom electrode of the photosensor body and the gate electrode are each disposed on a common surface of the substrate and comprise the same conductive material, the conductive material having been deposited on the pixel in the same deposition process. The source and drain electrodes and the common contact electrode for the photodiode each comprises the same source/drain metal conductive material, the conductive material having been deposited on the pixel in the same deposition process.