摘要:
A semiconductor device and a method of manufacturing are provided. In some embodiments, a backside annealing process such that a first heat source is placed along a backside of the substrate. In other embodiments, the first heat source is used in combination with an anti-reflection dielectric (ARD) layer is deposited over the substrate. In yet other embodiments, a second heat source is placed along a front side of the substrate in addition to the first heat source placed on the backside of the substrate. In yet other embodiments, a heat shield may be placed between the substrate and the second heat source on the front side of the substrate. In yet further embodiments, a single heat source may be used on the front side of the substrate in combination with the ARD layer. A reflectivity scan may be performed to determine which anneal stage (RTA or MSA or both) to place thermal leveling solution.
摘要:
The present disclosure provides a method and system for characterizing a pattern loading effect. A method may include performing a reflectivity measurement on a semiconductor wafer and determining an anneal process technique based on the reflectivity measurement. The determining the anneal process technique may include determining a spatial distance for a reflectivity change using a reflectivity map generated using the reflectivity measurement. This spatial distance is compared with the thermal diffusion length associated with each of the plurality of anneal process techniques. In an embodiment, a thermal profile map and/or a device performance map may be provided.
摘要:
A method of forming an integrated circuit includes forming a gate structure over a substrate. A plasma doping (PLAD) process is performed to at least a portion of the substrate that is adjacent to the gate structure. The doped portion of the substrate is annealed in an ambient with an oxygen-containing chemical.
摘要:
The present disclosure provides a method and system for characterizing a pattern loading effect. A method may include performing a reflectivity measurement on a semiconductor wafer and determining an anneal process technique based on the reflectivity measurement. The determining the anneal process technique may include determining a spatial distance for a reflectivity change using a reflectivity map generated using the reflectivity measurement. This spatial distance is compared with the thermal diffusion length associated with each of the plurality of anneal process techniques. In an embodiment, a thermal profile map and/or a device performance map may be provided.
摘要:
An embodiment of the disclosure includes doping a FinFET. A dopant-rich layer comprising an dopant is formed on a top surface and sidewalls of a semiconductor fin of a substrate. A cap layer is formed to cover the dopant-rich layer. The substrate is annealed to drives the dopant from the dopant-rich layer into the semiconductor fin.
摘要:
A semiconductor device having dislocations and a method of fabricating the semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate having an isolation feature therein and two gate stacks overlying the substrate, wherein one of the gate stacks is atop the isolation feature. The method further includes performing a pre-amorphous implantation process on the substrate. The method further includes forming a stress film over the substrate. The method also includes performing an annealing process on the substrate and the stress film.
摘要:
A semiconductor device having dislocations and a method of fabricating the semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate having an isolation feature therein and two gate stacks overlying the substrate, wherein one of the gate stacks is atop the isolation feature. The method further includes performing a pre-amorphous implantation process on the substrate. The method further includes forming a stress film over the substrate. The method also includes performing an annealing process on the substrate and the stress film.