Optical modulator using monocrystalline and polycrystalline silicon

    公开(公告)号:US11619838B2

    公开(公告)日:2023-04-04

    申请号:US17302632

    申请日:2021-05-07

    Abstract: Embodiments provide for an optical modulator, comprising: a lower guide, comprising: a lower hub, made of monocrystalline silicon; and a lower ridge, made of monocrystalline silicon that extends in a first direction from the lower hub; an upper guide, including: an upper hub; and an upper ridge, made of monocrystalline silicon that extends in a second direction, opposite of the first direction, from the upper hub and is aligned with the lower ridge; and a gate oxide layer separating the lower ridge from the upper ridge and defining a waveguide region with the lower guide and the upper guide.

    Grating coupler
    3.
    发明授权

    公开(公告)号:US11754784B2

    公开(公告)日:2023-09-12

    申请号:US17447153

    申请日:2021-09-08

    CPC classification number: G02B6/1228 G02B6/0026 G02B6/1223 G02B6/124

    Abstract: Embodiments presented in this disclosure generally relate to an optical device having a grating coupler for redirection of optical signals. One embodiment includes a grating coupler. The grating coupler generally includes a waveguide layer, a thickness of a waveguide layer portion of the waveguide layer being tapered, the thickness defining a direction, and a grating layer disposed above the waveguide layer and perpendicular to the direction where at least a grating layer portion of the grating layer overlaps the waveguide layer portion of the waveguide layer along the direction. Some embodiments are directed to grating coupler implemented with material layers above and a reflector layer below a grating layer, facilitating redirection and confinement of light that improves coupling loss and bandwidth. The material layers and reflector layer above and below the grating layer may be implemented with or without the waveguide layer being tapered.

    Using an anti-reflection coating with a grating coupler

    公开(公告)号:US11022757B1

    公开(公告)日:2021-06-01

    申请号:US16696957

    申请日:2019-11-26

    Abstract: Embodiments herein describe a photonic platform where an AR coating is disposed between an optical grating and a semiconductor substrate. In one embodiment, the optical grating is disposed within an insulative layer. A first side of the insulative layer provides an optical interface where an external optical source can transmit an optical signal into, or a receive an optical signal from, the grating. A second, opposite side of the insulative layer contacts the AR coating. When the external optical source transmits light through the first side of the insulative layer, some of the light passes through the grating and reaches the AR coating. The AR coating prevents this light from being reflected back to the grating by the semiconductor layer which can cause interference that varies the coupling efficiency of the grating.

    Optical modulator using monocrystalline and polycrystalline silicon

    公开(公告)号:US11036069B2

    公开(公告)日:2021-06-15

    申请号:US16356982

    申请日:2019-03-18

    Abstract: Embodiments provide for an optical modulator, comprising: a lower guide, comprising: a lower hub, made of monocrystalline silicon; and a lower ridge, made of monocrystalline silicon that extends in a first direction from the lower hub; an upper guide, including: an upper hub; and an upper ridge, made of monocrystalline silicon that extends in a second direction, opposite of the first direction, from the upper hub and is aligned with the lower ridge; and a gate oxide layer separating the lower ridge from the upper ridge and defining a waveguide region with the lower guide and the upper guide.

    Precision spacing control for optical waveguides

    公开(公告)号:US11860417B2

    公开(公告)日:2024-01-02

    申请号:US16565203

    申请日:2019-09-09

    Inventor: Xunyuan Zhang

    Abstract: Aspects described herein include a method of fabricating an optical apparatus. The method comprises etching a plurality of trenches partly through a first optical waveguide formed in a first semiconductor layer, wherein a first ridge is formed in the first optical waveguide between adjacent trenches of the plurality of trenches. The method further comprises conformally depositing a spacer layer above the first optical waveguide, wherein spacers are formed on sidewalls of each trench of the plurality of trenches. The method further comprises etching through the spacer layer to expose a respective bottom of each trench, wherein, for each respective bottom, a width of the respective bottom is defined by the spacers formed on the sidewalls of the trench corresponding to the respective bottom. The method further comprises depositing a first dielectric layer above the first optical waveguide, wherein dielectric material extends to the respective bottom of each trench.

    Electro-optic modulator with monocrystalline semiconductor waveguides

    公开(公告)号:US10969546B2

    公开(公告)日:2021-04-06

    申请号:US16198251

    申请日:2018-11-21

    Abstract: A method of fabricating an optical apparatus comprises forming a first waveguide on a dielectric substrate. The first waveguide extends in a direction of an optical path. The first waveguide comprises a monocrystalline semiconductor material and is doped with a first conductivity type. The method further comprises depositing a first dielectric layer on the first waveguide, etching a first opening that extends at least partly through the first dielectric layer, and forming a second waveguide at least partly overlapping the first waveguide along the direction. The second waveguide is doped with a different, second conductivity type. Forming the second waveguide comprises depositing a monocrystalline semiconductor material on the first dielectric layer, whereby the first opening is filled with the deposited monocrystalline semiconductor material.

Patent Agency Ranking