摘要:
The fabrication of a MEMS device such as an interferometric modulator is improved by employing an etch stop layer between a sacrificial layer and a mirror layer. The etch stop may reduce undesirable over-etching of the sacrificial layer and the mirror layer. The etch stop layer may also serve as a barrier layer, buffer layer, and/or template layer.
摘要:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, both rivets and posts may be used. In certain embodiments, these support structures are formed from rigid inorganic materials, such as metals or oxides. In certain embodiments, etch barriers may also be deposited to facilitate the use of materials in the formation of support structures which are not selectively etchable with respect to other components within the MEMS device.
摘要:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, both rivets and posts may be used. In certain embodiments, these support structures are formed from rigid inorganic materials, such as metals or oxides. In certain embodiments, etch barriers may also be deposited to facilitate the use of materials in the formation of support structures which are not selectively etchable with respect to other components within the MEMS device.
摘要:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.
摘要:
In one embodiment, the invention provides a method for fabricating a microelectromechanical systems device. The method comprises fabricating a first layer comprising a film having a characteristic electromechanical response, and a characteristic optical response, wherein the characteristic optical response is desirable and the characteristic electromechanical response is undesirable; and modifying the characteristic electromechanical response of the first layer by at least reducing charge build up thereon during activation of the microelectromechanical systems device.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.
摘要:
A method of manufacturing a microelectromechanical device includes forming at least two conductive layers on a substrate. An isolation layer is formed between the two conductive layers. The conductive layers are electrically coupled together and then the isolation layer is removed to form a gap between the conductive layers. The electrical coupling of the layers mitigates or eliminates the effects of electrostatic charge build up on the device during the removal process.
摘要:
Embodiments of MEMS devices comprise a conductive movable layer spaced apart from a conductive fixed layer by a gap, and supported by rigid support structures, or rivets, overlying depressions in the conductive movable layer, or by posts underlying depressions in the conductive movable layer. In certain embodiments, portions of the rivet structures extend through the movable layer and contact underlying layers. In other embodiments, the material used to form the rigid support structures may also be used to passivate otherwise exposed electrical leads in electrical connection with the MEMS devices, protecting the electrical leads from damage or other interference.