Abstract:
An optical communication system provides coherent optical transmission for metro applications. Relative to conventional solutions, the optical communication system can be implemented with reduced cost and can operate with reduced power consumption, while maintaining high data rate performance (e.g., 100 G). Furthermore, a programmable transceiver enables compatibility with a range of different types of optical networks having varying performance and power tradeoffs. In one embodiment, the optical communication system uses 100 Gb/s dual-polarization 16-point quadrature amplitude modulation (DP-16QAM) with non-linear pre-compensation of Indium Phosphide (InP) optics for low power consumption.
Abstract:
A receiver applies a calibration method to compensate for skew between input channels. The receiver skew is estimated by observing the coefficients of an adaptive equalizer which adjusts the coefficients based on time-varying properties of the multi-channel input signal. The receiver skew is compensated by programming the phase of the sampling clocks for the different channels. Furthermore, during real-time operation of the receiver, channel diagnostics is performed to automatically estimate differential group delay and/or other channel characteristics based on the equalizer coefficients using a frequency averaging or polarization averaging approach. Framer information can furthermore be utilized to estimate differential group delay that is an integer multiple of the symbol rate. Additionally, a DSP reset may be performed when substantial signal degradation is detected based on the channel diagnostics information.
Abstract:
A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
Abstract:
A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal at the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
Abstract:
A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
Abstract:
A timing recovery system generates a sampling clock to synchronize sampling of a receiver to a symbol rate of an incoming signal. The input signal is received over an optical communication channel. The receiver generates a timing matrix representing coefficients of a timing tone detected in the input signal. The timing tone representing frequency and phase of a symbol clock of the input signal and has a non-zero timing tone energy. The receiver computes a rotation control signal based on the timing matrix that represents an amount of accumulated phase shift in the input signal relative to the sampling clock. A numerically controlled oscillator is controlled to adjust at least one of the phase and frequency of the sampling clock based on the rotation control signal.
Abstract:
A receiver applies a calibration method to compensate for skew between input channels. The receiver skew is estimated by observing the coefficients of an adaptive equalizer which adjusts the coefficients based on time-varying properties of the multi-channel input signal. The receiver skew is compensated by programming the phase of the sampling clocks for the different channels. Furthermore, during real-time operation of the receiver, channel diagnostics is performed to automatically estimate differential group delay and/or other channel characteristics based on the equalizer coefficients using a frequency averaging or polarization averaging approach. Framer information can furthermore be utilized to estimate differential group delay that is an integer multiple of the symbol rate. Additionally, a DSP reset may be performed when substantial signal degradation is detected based on the channel diagnostics information.
Abstract:
A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.