Multiple superimposed interface pattern porous microstructure multi layer biosensing method

    公开(公告)号:US09909985B2

    公开(公告)日:2018-03-06

    申请号:US12683895

    申请日:2010-01-07

    IPC分类号: G01J3/45 G01N21/55 G01J3/26

    CPC分类号: G01N21/55 G01J3/26

    摘要: A preferred embodiment biosensor is a multi-layer micro-porous thin film structure. Pores in a top layer of the micro-porous thin film structure are sized to accept a first molecule of interest. Pores in a second layer of the micro-porous thin film structure are smaller than the pores in the top layer and are sized to accept a second molecule of interest that is smaller than the first molecule of interest. The pores in the second layer are too small to accept the first molecule of interest. The pores in the top layer and the pores in the second layer are sized and arranged such that light reflected from the multi-layer micro-porous thin film structure produces multiple superimposed interference patterns that can be resolved. In preferred embodiments, the multi-layer micro-porous thin film structure is a porous silicon thin film multi-layer structure formed on a silicon substrate, such as a silicon wafer. Specific and nonspecific binding can be detected with biosensors of the invention. The position of peaks in the Fourier transform of the reflection spectrum and the shift in peak amplitudes can be used to determine the presence and quantity of targeted biological molecules of interest.

    MULTIPLE SUPERIMPOSED INTERFACE PATTERN POROUS MICROSTRUCTURE MULTI LAYER BIOSENSING METHOD
    2.
    发明申请
    MULTIPLE SUPERIMPOSED INTERFACE PATTERN POROUS MICROSTRUCTURE MULTI LAYER BIOSENSING METHOD 有权
    多层超界面图案多孔微结构多层生物传感方法

    公开(公告)号:US20110170106A1

    公开(公告)日:2011-07-14

    申请号:US12683895

    申请日:2010-01-07

    IPC分类号: G01J3/45

    CPC分类号: G01N21/55 G01J3/26

    摘要: A preferred embodiment biosensor is a multi-layer micro-porous thin film structure. Pores in a top layer of the micro-porous thin film structure are sized to accept a first molecule of interest. Pores in a second layer of the micro-porous thin film structure are smaller than the pores in the top layer and are sized to accept a second molecule of interest that is smaller than the first molecule of interest. The pores in the second layer are too small to accept the first molecule of interest. The pores in the top layer and the pores in the second layer are sized and arranged such that light reflected from the multi-layer micro-porous thin film structure produces multiple superimposed interference patterns that can be resolved. In preferred embodiments, the multi-layer micro-porous thin film structure is a porous silicon thin film multi-layer structure formed on a silicon substrate, such as a silicon wafer. Specific and nonspecific binding can be detected with biosensors of the invention. The position of peaks in the Fourier transform of the reflection spectrum and the shift in peak amplitudes can be used to determine the presence and quantity of targeted biological molecules of interest.

    摘要翻译: 优选实施方式生物传感器是多层微孔薄膜结构。 微孔薄膜结构的顶层中的孔被设定为接受第一分子感兴趣。 微孔薄膜结构的第二层中的孔比顶层中的孔小,并且其尺寸适于接受小于第一目的分子的第二感兴趣的分子。 第二层中的孔太小,不能接受第一分子。 顶层中的孔和第二层中的孔的尺寸和布置使得从多层微孔薄膜结构反射的光产生可以解决的多个叠加的干涉图案。 在优选的实施方案中,多层微孔薄膜结构是在诸如硅晶片的硅衬底上形成的多孔硅薄膜多层结构。 可以用本发明的生物传感器检测特异性和非特异性结合。 反射光谱的傅立叶变换中的峰位置和峰值幅度的偏移可用于确定目标生物分子的存在和数量。

    Optical Sensor For Detecting Chemical Reaction Activity
    3.
    发明申请
    Optical Sensor For Detecting Chemical Reaction Activity 失效
    用于检测化学反应活性的光学传感器

    公开(公告)号:US20090215191A1

    公开(公告)日:2009-08-27

    申请号:US12087691

    申请日:2007-01-10

    IPC分类号: G01N21/55 G01N21/01 C12M1/34

    摘要: The invention provides an optical sensor for detecting chemical reaction activity, including, e.g., enzyme activity and catalytic or reactive molecule activity. An optical sensor of the invention includes a porous photonic film that produces a predetermined spectral reflectance response. In preferred embodiments, the film has a chemical coating (such as a hydrophobic layer) within its pores with an affinity for the reaction product(s) of the catalytic or otherwise reactive analyte A coating can also act as a protective layer in preferred embodiment. A thin substrate susceptible to reaction by at least one analyte of interest is on the surface of the thin film to block pores of the thin film. A method of detecting chemical reaction activity of the invention exposes the optical sensor to an analyte of interest, such as an enzyme or otherwise catalytic or reactive molecule. The optical sensor is subjected to light and the reflectivity spectrum of the optical sensor is monitored for a change indicative of reaction activity. Monitoring can include observation for a visible change or data acquisition via instruments such as a spectrometer for monitoring for a change in interferometric reflectance spectra.

    摘要翻译: 本发明提供了一种用于检测化学反应活性的光学传感器,包括例如酶活性和催化或反应性分子活性。 本发明的光学传感器包括产生预定光谱反射响应的多孔光子膜。 在优选的实施方案中,膜在其孔内具有对催化或其它反应性分析物的反应产物具有亲和性的化学涂层(例如疏水层)。在优选实施方案中,涂层也可以用作保护层。 易受至少一种感兴趣的分析物反应的薄基材在薄膜的表面上,以阻挡薄膜的孔。 检测本发明的化学反应活性的方法将光学传感器暴露于感兴趣的分析物,例如酶或其它催化或反应性分子。 对光学传感器进行光照射,并且监测光学传感器的反射光谱以表明反应活性。 监测可以包括通过诸如用于监测干涉反射光谱变化的光谱仪等仪器进行可见变化或数据采集的观察。

    Optical sensor for detecting chemical reaction activity
    4.
    发明授权
    Optical sensor for detecting chemical reaction activity 失效
    用于检测化学反应活性的光学传感器

    公开(公告)号:US07759129B2

    公开(公告)日:2010-07-20

    申请号:US12087691

    申请日:2007-01-10

    IPC分类号: G01N21/00

    摘要: The invention provides an optical sensor for detecting chemical reaction activity, including, e.g., enzyme activity and catalytic or reactive molecule activity. An optical sensor of the invention includes a porous photonic film that produces a predetermined spectral reflectance response. In preferred embodiments, the film has a chemical coating (such as a hydrophobic layer) within its pores with an affinity for the reaction product(s) of the catalytic or otherwise reactive analyte A coating can also act as a protective layer in preferred embodiment. A thin substrate susceptible to reaction by at least one analyte of interest is on the surface of the thin film to block pores of the thin film. A method of detecting chemical reaction activity of the invention exposes the optical sensor to an analyte of interest, such as an enzyme or otherwise catalytic or reactive molecule. The optical sensor is subjected to light and the reflectivity spectrum of the optical sensor is monitored for a change indicative of reaction activity. Monitoring can include observation for a visible change or data acquisition via instruments such as a spectrometer for monitoring for a change in interferometric reflectance spectra.

    摘要翻译: 本发明提供了一种用于检测化学反应活性的光学传感器,包括例如酶活性和催化或反应性分子活性。 本发明的光学传感器包括产生预定光谱反射响应的多孔光子膜。 在优选的实施方案中,膜在其孔内具有对催化或其它反应性分析物的反应产物具有亲和性的化学涂层(例如疏水层)。在优选实施方案中,涂层也可以用作保护层。 易受至少一种感兴趣的分析物反应的薄基材在薄膜的表面上,以阻挡薄膜的孔。 检测本发明的化学反应活性的方法将光学传感器暴露于感兴趣的分析物,例如酶或其它催化或反应性分子。 对光学传感器进行光照射,并且监测光学传感器的反射光谱以表明反应活性。 监测可以包括通过诸如用于监测干涉反射光谱变化的光谱仪等仪器进行可见变化或数据采集的观察。

    Temperature response sensing and classification of analytes with porous optical films
    5.
    发明授权
    Temperature response sensing and classification of analytes with porous optical films 有权
    多孔光学薄膜的分析物的温度响应感测和分类

    公开(公告)号:US09007593B2

    公开(公告)日:2015-04-14

    申请号:US13811147

    申请日:2011-07-19

    IPC分类号: G01N21/00 G01N21/25 G01N21/17

    摘要: Methods and systems of the invention can determine the identity and quantity of analytes in a vapor. In preferred methods, a porous optical film is exposed to vapor which contains analyte. The porous optical film is heated and its optical response is monitored during heating. An optical response observed via heating can determine the identity and/or quantity of the analyte. In preferred embodiments, optical response during a thermal pulse is compared to a database of sensor responses that are characteristic of various analytes. Preferred methods are conducted a relatively low temperatures, for example below about 200° C. In preferred methods, a heating and cooling cycle produces a hysteresis curve in the optical response that is indicative of analytes. In preferred embodiments, a thermal reset pulse resets the porous optical film for later use and also provides an optical response that can be used for sensing.

    摘要翻译: 本发明的方法和系统可以确定蒸汽中分析物的身份和数量。 在优选的方法中,多孔光学膜暴露于含有分析物的蒸汽。 加热多孔光学膜并在加热期间监测其光学响应。 通过加热观察到的光学响应可以确定分析物的身份和/或数量。 在优选实施例中,将热脉冲期间的光学响应与各种分析物的特征的传感器响应的数据库进行比较。 优选的方法进行相对较低的温度,例如低于约200℃。在优选的方法中,加热和冷却循环在指示分析物的光学响应中产生滞后曲线。 在优选实施例中,热复位脉冲复位多孔光学膜用于稍后使用,并且还提供可用于感测的光学响应。

    Control of materials and porous magnetic particles
    6.
    发明授权
    Control of materials and porous magnetic particles 有权
    材料和多孔磁性颗粒的控制

    公开(公告)号:US08377147B2

    公开(公告)日:2013-02-19

    申请号:US12300369

    申请日:2007-05-16

    IPC分类号: B32B15/00 B44C1/22

    摘要: The present invention uses externally applied electromagnetic stimulus to control and heat porous magnetic particles and material associated with the particles. The particles contain magnetic material, such as superparamagnetic iron oxide and are infused with a material. Application of a DC magnetic field allows them to be moved with their infused material, and application of an AC RF electromagnetic field allows them to be heated with their infused material. The material can be infused into pores of the particles and the particles can also adhere to an aqueous droplet. The present invention also provides a multi-layer porous magnetic particle. The particle includes a host layer having pores sized to accept magnetic nanoparticles. Magnetic nanoparticles are infused within pores of the host layer. An encoding layer includes pores that define a spectral code. The pores in the encoding layer are sized to substantially exclude the magnetic nanoparticles. The encoding layer can also be a multi-layer, exhibiting, for example, a complex spectral code.

    摘要翻译: 本发明使用外部施加的电磁刺激来控制和加热与颗粒相关联的多孔磁性颗粒和材料。 颗粒包含磁性材料,例如超顺磁性氧化铁,并且注入材料。 直流磁场的应用使得它们可以通过其输入的材料移动,并且使用AC RF电磁场允许它们与其输入的材料一起被加热。 该材料可以注入到颗粒的孔中,并且颗粒也可以粘附到水滴上。 本发明还提供一种多层多孔磁性颗粒。 颗粒包括具有尺寸以接受磁性纳米颗粒的孔的主体层。 磁性纳米颗粒注入主体层的孔内。 编码层包括限定光谱代码的孔。 编码层中的孔的大小被确定为基本排除磁性纳米颗粒。 编码层也可以是多层,表现出例如复谱谱。

    SYSTEM AND METHOD FOR REMOTE, FREE-SPACE OPTICAL DETECTION OF POTENTIAL THREAT AGENT
    8.
    发明申请
    SYSTEM AND METHOD FOR REMOTE, FREE-SPACE OPTICAL DETECTION OF POTENTIAL THREAT AGENT 有权
    用于遥感,自由空间光学检测潜在威胁剂的系统和方法

    公开(公告)号:US20080204752A1

    公开(公告)日:2008-08-28

    申请号:US11680309

    申请日:2007-02-28

    IPC分类号: G01J3/46

    摘要: A system and method for free space, optical remote sensing of a potential threat agent using spectrally responsive sensor material. In one example the sensor material is formed by particles, which in one particular form are porous photonic crystals. The particles are dispersed into an area being monitored for the presence of the potential threat agent. A pair of lasers is used to generate optical light beams that are directed at the sensor particles after the particles have been dispersed. The light reflected by the sensor particles is then analyzed. The presence of the potential threat agent causes a shift in the spectral peak of light reflected from the sensor particles that can be sensed using photo detectors and a processing subsystem. The system can be tuned to remotely detect for specific chemical, biological or environmental agents that may be present within a given area.

    摘要翻译: 使用光谱响应传感器材料的自由空间,潜在威胁剂的光学遥感的系统和方法。 在一个示例中,传感器材料由颗粒形成,其在一种特定形式中是多孔光子晶体。 颗粒被分散到正在监测的潜在威胁剂的存在的区域中。 使用一对激光器在颗粒分散之后产生指向传感器颗粒的光束。 然后分析由传感器颗粒反射的光。 潜在威胁剂的存在导致从可以使用光电检测器和处理子系统感测的传感器颗粒反射的光的光谱峰值的偏移。 该系统可以被调整以远程检测可能存在于给定区域内的特定化学,生物或环境因素。

    TIME-GATED FLUORESCENCE IMAGING WITH SI-CONTAINING PARTICLES
    10.
    发明申请
    TIME-GATED FLUORESCENCE IMAGING WITH SI-CONTAINING PARTICLES 审中-公开
    具有含SI颗粒的时域荧光成像

    公开(公告)号:US20140154184A1

    公开(公告)日:2014-06-05

    申请号:US14113960

    申请日:2012-04-27

    IPC分类号: A61K49/00

    摘要: A method for imaging leverages the fluorescence lifetime of a fluorescent Si-containing particle to distinguish from background fluorescence. A particle is introduced into tissue. An excitation light pulse is applied to excite luminescence from the fluorescent Si-containing particle. Time-gated measuring of a responsive luminescence signal identifies the particle. In preferred embodiments the particle is coated or encapsulated with an organic material. The fluorescence lifetime of particles can be controlled during manufacture, such as by oxidation levels, quenching treatments, or by aging. This permits introducing and using groups of particles in imaging that have unique lifetimes and multiple time gating can be used to identify different particles or to monitor the change in lifetime of a single set of particles as they respond to a biochemical stimulus. The particles can also be functionalized for affinity to particular tissues and can be loaded with treatment molecules.

    摘要翻译: 用于成像的方法利用荧光含Si颗粒的荧光寿命来区分背景荧光。 将颗粒引入组织。 施加激发光脉冲以激发来自荧光含Si颗粒的发光。 响应发光信号的时间门控测量识别粒子。 在优选的实施方案中,颗粒被涂覆或用有机材料包封。 颗粒的荧光寿命可以在制造过程中进行控制,例如通过氧化水平,淬火处理或老化来控制。 这允许在成像中引入和使用具有独特寿命的颗粒群,并且可以使用多次浇注来识别不同的颗粒或者在响应于生化刺激时监测单组颗粒的寿命的变化。 颗粒也可以被功能化以对特定组织的亲和力并且可以加载治疗分子。