摘要:
The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
摘要:
The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnected a cut SWNT is used as a sensor to detect a biological binding event.
摘要:
The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
摘要:
The present invention generally relates to the fabrication of molecular electronics devices from molecular wires and Single Wall Nanotubes (SWNT). In one embodiment, the cutting of a SWNT is achieved by opening a window of small width by lithography patterning of a protective layer on top of the SWNT, followed by applying an oxygen plasma to the exposed SWNT portion. In another embodiment, the gap of a cut SWNT is reconnected by one or more difunctional molecules having appropriate lengths reacting to the functional groups on the cut SWNT ends to form covalent bonds. In another embodiment, the gap of a cut SWNT gap is filled with a self-assembled monolayer from derivatives of novel contorted hexabenzocoranenes. In yet another embodiment, a device based on molecular wire reconnecting a cut SWNT is used as a sensor to detect a biological binding event.
摘要:
An apparatus or method can include forming a graphene layer including a working surface, forming a polyvinyl alcohol (PVA) layer upon the working surface of the graphene layer, and forming a dielectric layer upon the PVA layer. In an example, the PVA layer can be activated and the dielectric layer can be deposited on an activated portion of the PVA layer. In an example, an electronic device can include such apparatus, such as included as a portion of graphene field-effect transistor (GFET), or one or more other devices.
摘要:
An apparatus or method can include forming a graphene layer including a working surface, forming a polyvinyl alcohol (PVA) layer upon the working surface of the graphene layer, and forming a dielectric layer upon the PVA layer. In an example, the PVA layer can be activated and the dielectric layer can be deposited on an activated portion of the PVA layer. In an example, an electronic device can include such apparatus, such as included as a portion of graphene field-effect transistor (GFET), or one or more other devices.
摘要:
A locally gated graphene nanostructure is described, along with methods of making and using the same. A graphene layer can include first and second terminal regions separated by a substantially single layer gated graphene nanoconstriction. A local first gate region can be separated from the graphene nanoconstriction by a first gate dielectric. The local first gate region can be capacitively coupled to gate electrical conduction in the graphene nanoconstriction. A second gate region can be separated from the graphene nanoconstriction by a second gate dielectric. The second gate region can be capacitively coupled to provide a bias to a first location in the graphene nanoconstriction and to a second location outside of the graphene nanoconstriction. Methods of making and using locally gated graphene nanostructures are also described.
摘要:
A locally gated graphene nanostructure is described, along with methods of making and using the same. A graphene layer can include first and second terminal regions separated by a substantially single layer gated graphene nanoconstriction. A local first gate region can be separated from the graphene nanoconstriction by a first gate dielectric. The local first gate region can be capacitively coupled to gate electrical conduction in the graphene nanoconstriction. A second gate region can be separated from the graphene nanoconstriction by a second gate dielectric. The second gate region can be capacitively coupled to provide a bias to a first location in the graphene nanoconstriction and to a second location outside of the graphene nanoconstriction. Methods of making and using locally gated graphene nanostructures are also described.
摘要:
The distributed bubble generating system intakes air and delivers this air at maximum capacity to the solution in the long-channel shape bubble generating units. The air is blown through the firm sponge type filters of the bubble generating units, which are submerged in the solution. This configuration provides the capability of rapid and effective generation of bubbles.
摘要:
A method of producing carbon single wall nanotubes (SWNT) by CVD is disclosed. The SWNTs are grown on a metal-catalyzed support surface, such as a commercially available silicon tips for atomic force microscopes (AFM). The growth characteristics of the SWNTs can be controlled by adjusting the density of the catalyst and the CVD growth conditions. The length of the SWNTs can be adjusted through pulsed electrical etching. Nanotubes of this type can find applications in nanotubes structures with defined patterns and for nano-tweezers. Nano-tweezers may be useful for manipulating matter, such as biological material, on a molecular level.