摘要:
A sheet (20) for use in microfluidic, microelectronic, micromechanical, and/or microoptical applications requiring through-flow, through-conductivity, through-transmission, and/or other through patterns. The sheet (20) includes micro-sized architecture including at least one via (22) extending through the thickness of the layer of thermoplastic material. The via-defining walls in the thermoplastic layer are formed by the thermoplastic material flowing around a projection and then solidifying around the projection.
摘要:
There is disclosed a method and apparatus for producing a polymeric film that accurately replicates a complex mold surface at least a portion of which surface has microstructured or nano-structured dimensions. A polymeric powder is electrodeposited on an underlying mold surface. Then the powder is cured to create a polymeric film. Finally the film is removed from the mold surface.
摘要:
A supported cutting device is provided that includes a base and at least one cutting element having a cutting edge. The at least one cutting element extends outwardly from the base and has a geometry that permits the supported cutting device to be separated from a mold along parting lines. The base and the at least one cutting element are integrally formed of a metallic material applied by a deposition process. A method of making a supported cutting device is also provided. The method includes the steps of: 1) providing a template having at least one cutting element with a cutting edge; 2) forming a mold using at least a portion of the template that includes the at least one cutting element; 3) depositing a metallic material onto the mold to form a supported cutting device that includes a base and at least one cutting element; and 4) separating the supported cutting device from the mold.
摘要:
A substrate has embossed thereon a plurality of shaped recesses of a predetermined precise geometric profile, each recess having a flat bottom surface having a major dimension of about 1000 μm or less, the substrate being capable of undergoing a thermal cycle of about one hour at about 150° C. while maintaining about ±10 μm or less dimensional stability of the embossed shaped indentations, and wherein the substrate comprises an amorphous thermoplastic material. During the thermal cycle the substrate has an elastic modulus greater than about 1010 dynes/cm2 and a viscoelastic index of less than about 0.1.