摘要:
An apparatus removes carbon monoxide (CO) from a hydrogen-rich gas stream in a hydrogen fuel cell system. CO fouls costly catalytic particles in the membrane electrode assemblies of proton exchange membrane (PEM) fuel cells. A vessel houses a carbon monoxide adsorbent. The vessel may be a rotating pressure swing adsorber. A water gas shift reactor is upstream of the rotating pressure swing adsorber. The water gas shift reactor may include a second adsorbent adapted to adsorb carbon monoxide at low temperatures and to desorb carbon monoxide at high temperatures. The apparatus advantageously eliminates the use of a preferential oxidation (PROX) reactor, by providing an apparatus which incorporates CO adsorption in the place of the PROX reactor. This cleans up carbon monoxide without hydrogen consumption and the concomitant, undesirable excess low grade heat generation. The present invention reduces start-up duration, and improves overall fuel processor efficiency during normal operation.
摘要:
An apparatus removes carbon monoxide (CO) from a hydrogen-rich gas stream in a hydrogen fuel cell system. CO fouls costly catalytic particles in the membrane electrode assemblies of proton exchange membrane (PEM) fuel cells. A vessel houses a carbon monoxide adsorbent. The vessel may be a rotating pressure swing adsorber. A water gas shift reactor is upstream of the rotating pressure swing adsorber. The water gas shift reactor may include a second adsorbent adapted to adsorb carbon monoxide at low temperatures and to desorb carbon monoxide at high temperatures. The apparatus advantageously eliminates the use of a preferential oxidation (PROX) reactor, by providing an apparatus which incorporates CO adsorption in the place of the PROX reactor. This cleans up carbon monoxide without hydrogen consumption and the concomitant, undesirable excess low grade heat generation. The present invention reduces start-up duration, and improves overall fuel processor efficiency during normal operation.
摘要:
A method of purging residual hydrogen from a fuel cell stack is disclosed. The method includes providing an air stream, providing a temporary nitrogen stream by removing oxygen from the air stream with an adsorbent bed and passing the nitrogen stream through the fuel cell stack.
摘要:
A method of purging residual hydrogen from a fuel cell stack is disclosed. The method includes providing an air stream, providing a temporary nitrogen stream by removing oxygen from the air stream with an adsorbent bed and passing the nitrogen stream through the fuel cell stack.
摘要:
A stand-alone fuel processor (10) for producing hydrogen from a hydrocarbon fuel for a fuel cell engine in a vehicle. The fuel processor (10) includes a primary reactor (14) that dissociates hydrogen and other by-products from the hydrocarbon fuel as a reformate gas. The reformate gas is applied to a WGS reactor (48) to convert carbon monoxide and water to hydrogen and carbon dioxide. The WGS reactor (14) may include an adsorbent for adsorbing carbon monoxide. The reformate gas from the WGS reactor (48) is then sent to a rapid-cycle PSA device (12) for adsorbing the undesirable by-products in the gas and generates a stream of pure hydrogen. A liquid water separator (70) separates water from the reformate gas before it is applied to the PSA device (12). The PSA device (12) uses a portion of the separated hydrogen as a desorbing gas to purify the adsorbent in the PSA device (12). The by-products of the reformate gas can be used as a fuel in a combustor (30) that generates heat for the primary reactor (14).
摘要:
A method for improving the chemical stability of a vapor transfer membrane includes providing a vapor transfer membrane including an ionomer layer having protogenic groups and then annealing the vapor transfer membrane at a temperature greater than about 100° C. Advantageously, the performance and durability of WVT membranes are markedly improved by thermally annealing the membranes.
摘要:
An ion-conducting membrane for fuel cell applications a first layer including a first ion-conducting polymer and nanofibers dispersed therein. The first layer includes a first side and a second side. A second layer is disposed over the first side of the first layer and includes a second ion-conducting polymer without nanofibers.
摘要:
A polymer blend useful as an ion conductor in fuel cells includes a first polymer having a cyclobutyl moiety and a second polymer include a sulfonic acid group.
摘要:
A polymer blend useful as an ion conductor in fuel cells includes a first polymer that includes a non-ionic segment and a second polymer that includes a sulfonic acid group.
摘要:
A fuel cell or a fuel cell stack component comprises an active area and a non-active area. A peroxide decomposing metal compound or metal alloy is disposed in or on the non-active area of a fuel cell or a fuel cell component. The metal compound or alloy is capable of providing a peroxide decomposing metal species that can migrate from the non-active area to an active area of a fuel cell. A fuel cell or membrane electrode assembly having a peroxide decomposing metal compound or alloy disposed in its non-active area exhibits improved durability.