Abstract:
A MRAM cell including a first tunnel barrier layer between a soft ferromagnetic layer having a free magnetization and a first hard ferromagnetic layer having a first storage magnetization. A second tunnel barrier layer is between the soft ferromagnetic layer and a second hard ferromagnetic layer and has a second storage magnetization. The first storage magnetization is freely orientable at a first high predetermined temperature threshold and the second storage magnetization being freely orientable at a second predetermined high temperature threshold. The first high predetermined temperature threshold is higher than the second predetermined high temperature threshold. The MRAM cell can be used as a ternary content addressable memory (TCAM) and store up to three distinct state levels. The MRAM cell has a reduced size and can be made at low cost.
Abstract:
A MRAM cell including a first tunnel barrier layer between a soft ferromagnetic layer having a free magnetization and a first hard ferromagnetic layer having a first storage magnetization. A second tunnel barrier layer is between the soft ferromagnetic layer and a second hard ferromagnetic layer and has a second storage magnetization. The first storage magnetization is freely orientable at a first high predetermined temperature threshold and the second storage magnetization being freely orientable at a second predetermined high temperature threshold. The first high predetermined temperature threshold is higher than the second predetermined high temperature threshold. The MRAM cell can be used as a ternary content addressable memory (TCAM) and store up to three distinct state levels. The MRAM cell has a reduced size and can be made at low cost.
Abstract:
A magnetic logic unit (MLU) cell includes a first magnetic tunnel junction and a second magnetic tunnel junction, each magnetic tunnel junction including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a tunnel barrier layer between the first and second layer. A field line for passing a field current such as to generate an external magnetic field is adapted to switch the first magnetization. The first magnetic layer is arranged such that the magnetic tunnel junction magnetization varies linearly with the generated external magnetic field. An MLU amplifier includes a plurality of the MLU cells. The MLU amplifier has large gains, extended cut off frequencies and improved linearity.
Abstract:
The present disclosure concerns a multilevel magnetic element comprising a first tunnel barrier layer between a soft ferromagnetic layer having a magnetization that can be freely aligned and a first hard ferromagnetic layer having a magnetization that is fixed at a first high temperature threshold and freely alignable at a first low temperature threshold. The magnetic element further comprises a second tunnel barrier layer and a second hard ferromagnetic layer having a magnetization that is fixed at a second high temperature threshold and freely alignable at a first low temperature threshold; the soft ferromagnetic layer being comprised between the first and second tunnel barrier layers. The magnetic element disclosed herein allows for writing four distinct levels using only a single current line.
Abstract:
A MRAM-based magnetic device including an electrical interconnecting device including: a magnetic tunnel junction; a strap portion electrically connecting a lower end of the magnetic tunnel junction; a current line portion electrically connecting an upper end of the magnetic tunnel junction; an upper metallic stud electrically connecting a lower metallic stud through a via; the strap portion being in direct electrical contact with the via, such that a current passing in the magnetic tunnel junction flows directly between the strap portion and the via and between the via and the lower metallic stud or the upper metallic stud.
Abstract:
A magnetic logic unit (MLU) cell includes a first and second magnetic tunnel junction, each including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a barrier layer; and a field line for passing a field current such as to generate an external magnetic field adapted to adjust the first magnetization. The first and second magnetic layers and the barrier layer are arranged such that the first magnetization is magnetically coupled antiparallel with the second magnetization through the barrier layer. The MLU cell also includes a biasing device arranged for applying a static biasing magnetic field oriented substantially parallel to the external magnetic field such as to orient the first magnetization at about 90° relative to the second magnetization, the first and second magnetizations being oriented symmetrically relative to the direction of the external magnetic field.
Abstract:
A magnetic logic unit (MLU) cell includes a first and second magnetic tunnel junction, each including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a barrier layer; and a field line for passing a field current such as to generate an external magnetic field adapted to adjust the first magnetization. The first and second magnetic layers and the barrier layer are arranged such that the first magnetization is magnetically coupled antiparallel with the second magnetization through the barrier layer. The MLU cell also includes a biasing device arranged for applying a static biasing magnetic field oriented substantially parallel to the external magnetic field such as to orient the first magnetization at about 90° relative to the second magnetization, the first and second magnetizations being oriented symmetrically relative to the direction of the external magnetic field.
Abstract:
An MRAM cell including a first tunnel barrier layer between a soft ferromagnetic layer having a free magnetization and a first hard ferromagnetic layer having a first storage magnetization; a second tunnel barrier layer between the soft ferromagnetic layer and a second hard ferromagnetic layer having a second storage magnetization; the first storage magnetization being freely orientable at a first high predetermined temperature threshold and the second storage magnetization being freely orientable at a second predetermined high temperature threshold; the first high predetermined temperature threshold being higher than the second predetermined high temperature threshold. The MRAM cell can be used as a ternary content addressable memory (TCAM) and store up to three distinct state levels. The MRAM cell has a reduced size and can be made at low cost.
Abstract:
The present disclosure concerns a multilevel magnetic element comprising a first tunnel barrier layer between a soft ferromagnetic layer having a magnetization that can be freely aligned and a first hard ferromagnetic layer having a magnetization that is fixed at a first high temperature threshold and freely alignable at a first low temperature threshold. The magnetic element further comprises a second tunnel barrier layer and a second hard ferromagnetic layer having a magnetization that is fixed at a second high temperature threshold and freely alignable at a first low temperature threshold; the soft ferromagnetic layer being comprised between the first and second tunnel barrier layers. The magnetic element disclosed herein allows for writing four distinct levels using only a single current line.
Abstract:
A MRAM-based magnetic device including an electrical interconnecting device including: a magnetic tunnel junction; a strap portion electrically connecting a lower end of the magnetic tunnel junction; a current line portion electrically connecting an upper end of the magnetic tunnel junction; an upper metallic stud electrically connecting a lower metallic stud through a via; the strap portion being in direct electrical contact with the via, such that a current passing in the magnetic tunnel junction flows directly between the strap portion and the via and between the via and the lower metallic stud or the upper metallic stud.