Abstract:
A thermally assisted switching MRAM element including a magnetic tunnel junction including a reference layer having a reference magnetization; a storage layer having a storage magnetization; a tunnel barrier layer included between the storage layer and the reference layer; and a storage antiferromagnetic layer exchange-coupling the storage layer such as to pin the storage magnetization at a low temperature threshold and to free it at a high temperature threshold. The antiferromagnetic layer includes: at least one first antiferromagnetic layer having a first storage blocking temperature, and at least one second antiferromagnetic layer having a second storage blocking temperature; wherein the first storage blocking temperature is below 200° C. and the second storage blocking temperature is above 250° C. The MRAM element combines better data retention compared with known MRAM elements with low writing mode operating temperature.
Abstract:
MRAM element having a magnetic tunnel junction including a reference layer, a storage layer, a tunnel barrier layer between the reference and storage layers, and a storage antiferromagnetic layer. The storage antiferromagnetic layer has a first function of exchange-coupling a storage magnetization of the storage layer and a second function of heating the magnetic tunnel junction when a heating current in passed in the magnetic tunnel junction. The MRAM element has better data retention and low writing temperature.
Abstract:
MRAM element having a magnetic tunnel junction including a reference layer, a storage layer, a tunnel barrier layer between the reference and storage layers, and a storage antiferromagnetic layer. The storage antiferromagnetic layer has a first function of exchange-coupling a storage magnetization of the storage layer and a second function of heating the magnetic tunnel junction when a heating current in passed in the magnetic tunnel junction. The MRAM element has better data retention and low writing temperature.
Abstract:
A magnetic logic unit (MLU) cell includes a first and second magnetic tunnel junction, each including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a barrier layer; and a field line for passing a field current such as to generate an external magnetic field adapted to adjust the first magnetization. The first and second magnetic layers and the barrier layer are arranged such that the first magnetization is magnetically coupled antiparallel with the second magnetization through the barrier layer. The MLU cell also includes a biasing device arranged for applying a static biasing magnetic field oriented substantially parallel to the external magnetic field such as to orient the first magnetization at about 90° relative to the second magnetization, the first and second magnetizations being oriented symmetrically relative to the direction of the external magnetic field.
Abstract:
A magnetic logic unit (MLU) cell includes a first and second magnetic tunnel junction, each including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a barrier layer; and a field line for passing a field current such as to generate an external magnetic field adapted to adjust the first magnetization. The first and second magnetic layers and the barrier layer are arranged such that the first magnetization is magnetically coupled antiparallel with the second magnetization through the barrier layer. The MLU cell also includes a biasing device arranged for applying a static biasing magnetic field oriented substantially parallel to the external magnetic field such as to orient the first magnetization at about 90° relative to the second magnetization, the first and second magnetizations being oriented symmetrically relative to the direction of the external magnetic field.
Abstract:
Magnetic element including a first ferromagnetic layer having a first magnetization including a stable magnetization vortex configuration having a vortex core. The first ferromagnetic layer includes an indentation configured such that the vortex core nucleates substantially at the indentation. Upon application of an external magnetic field in a first field direction, the vortex core moves along a first path and the first magnetization rotates around the vortex core in a counterclockwise direction. Upon application of the external magnetic field in a second field direction opposed to the first field direction, the vortex core moves along a second path and the first magnetization rotates around the vortex core in a clockwise direction. Both the first and second field path are substantially identical and move the vortex core away from the indentation.
Abstract:
A magnetic logic unit (MLU) cell includes a first magnetic tunnel junction and a second magnetic tunnel junction, each magnetic tunnel junction including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a tunnel barrier layer between the first and second layer. A field line for passing a field current such as to generate an external magnetic field is adapted to switch the first magnetization. The first magnetic layer is arranged such that the magnetic tunnel junction magnetization varies linearly with the generated external magnetic field. An MLU amplifier includes a plurality of the MLU cells. The MLU amplifier has large gains, extended cut off frequencies and improved linearity.
Abstract:
Magnetic element including a first ferromagnetic layer having a first magnetization including a stable magnetization vortex configuration having a vortex core. The first ferromagnetic layer includes an indentation configured such that the vortex core nucleates substantially at the indentation. Upon application of an external magnetic field in a first field direction, the vortex core moves along a first path and the first magnetization rotates around the vortex core in a counterclockwise direction. Upon application of the external magnetic field in a second field direction opposed to the first field direction, the vortex core moves along a second path and the first magnetization rotates around the vortex core in a clockwise direction. Both the first and second field path are substantially identical and move the vortex core away from the indentation.
Abstract:
A magnetic logic unit (MLU) cell includes a first magnetic tunnel junction and a second magnetic tunnel junction, each magnetic tunnel junction including a first magnetic layer having a first magnetization, a second magnetic layer having a second magnetization, and a tunnel barrier layer between the first and second layer. A field line for passing a field current such as to generate an external magnetic field is adapted to switch the first magnetization. The first magnetic layer is arranged such that the magnetic tunnel junction magnetization varies linearly with the generated external magnetic field. An MLU amplifier includes a plurality of the MLU cells. The MLU amplifier has large gains, extended cut off frequencies and improved linearity.
Abstract:
A thermally assisted switching MRAM element including a magnetic tunnel junction including a reference layer having a reference magnetization; a storage layer having a storage magnetization; a tunnel barrier layer included between the storage layer and the reference layer; and a storage antiferromagnetic layer exchange-coupling the storage layer such as to pin the storage magnetization at a low temperature threshold and to free it at a high temperature threshold. The antiferromagnetic layer includes: at least one first antiferromagnetic layer having a first storage blocking temperature, and at least one second antiferromagnetic layer having a second storage blocking temperature; wherein the first storage blocking temperature is below 200° C. and the second storage blocking temperature is above 250° C. The MRAM element combines better data retention compared with known MRAM elements with low writing mode operating temperature.