SYSTEMS AND METHODS FOR ADDRESSING DEVICES IN A SUPERCONDUCTING CIRCUIT

    公开(公告)号:US20210190885A1

    公开(公告)日:2021-06-24

    申请号:US17054631

    申请日:2019-05-16

    Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.

    KINETIC INDUCTANCE FOR COUPLERS AND COMPACT QUBITS

    公开(公告)号:US20250040454A1

    公开(公告)日:2025-01-30

    申请号:US18790374

    申请日:2024-07-31

    Abstract: A circuit can include a galvanic coupling of a coupler to a qubit by a segment of kinetic inductance material. The circuit can include a galvanic kinetic inductance coupler having multiple windings. The circuit can include a partially-galvanic coupler having multiple windings. The partially-galvanic coupler can include a magnetic coupling and a galvanic coupling. The circuit can include an asymmetric partially-galvanic coupler having a galvanic coupling and a first magnetic coupling to one qubit and a second magnetic coupling to a second qubit. The circuit can include a compact kinetic inductance qubit having a qubit body loop comprising a kinetic inductance material. A multilayer integrated circuit including a kinetic inductance layer can form a galvanic kinetic inductance coupling. A multilayer integrated circuit including a kinetic inductance layer can form at least a portion of a compact kinetic inductance qubit body loop.

    SYSTEMS AND METHODS FOR COUPLING A SUPERCONDUCTING TRANSMISSION LINE TO AN ARRAY OF RESONATORS

    公开(公告)号:US20230006324A1

    公开(公告)日:2023-01-05

    申请号:US17862605

    申请日:2022-07-12

    Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.

    SYSTEMS AND METHODS FOR QUBIT CONTROL

    公开(公告)号:US20250055457A1

    公开(公告)日:2025-02-13

    申请号:US18718139

    申请日:2022-12-14

    Abstract: A method of generating a coupling gate between qubits and a superconducting integrated circuit providing a pulse source are discussed. The method includes energizing a power line connected to a pulse source, applying a signal to a control line in communication with a coupler, the coupler in communication between the two qubits, and applying a second signal to a control line in communication with a resonator. The method further includes inducing a tone on a transmission line that selectively communicates with the resonator to bias the resonator, the resonator coupling a signal to the pulse source in combination with the power line, and applying a third signal to a pulse source control line in communication with the pulse source, the pulse source applying a pulse to the coupler in response to the third signal to couple the two qubits for a duration of the coupling gate.

    Kinetic inductance for couplers and compact qubits

    公开(公告)号:US12102017B2

    公开(公告)日:2024-09-24

    申请号:US17429456

    申请日:2020-02-13

    CPC classification number: H10N69/00 G06N10/40 H10N60/12 H10N60/805

    Abstract: A circuit can include a galvanic coupling of a coupler to a qubit by a segment of kinetic inductance material. The circuit can include a galvanic kinetic inductance coupler having multiple windings. The circuit can include a partially-galvanic coupler having multiple windings. The partially-galvanic coupler can include a magnetic coupling and a galvanic coupling. The circuit can include an asymmetric partially-galvanic coupler having a galvanic coupling and a first magnetic coupling to one qubit and a second magnetic coupling to a second qubit. The circuit can include a compact kinetic inductance qubit having a qubit body loop comprising a kinetic inductance material. A multilayer integrated circuit including a kinetic inductance layer can form a galvanic kinetic inductance coupling. A multilayer integrated circuit including a kinetic inductance layer can form at least a portion of a compact kinetic inductance qubit body loop.

Patent Agency Ranking