-
公开(公告)号:US20210190885A1
公开(公告)日:2021-06-24
申请号:US17054631
申请日:2019-05-16
Applicant: D-WAVE SYSTEMS INC.
Inventor: Loren J. Swenson , Emile M. Hoskinson , Mark H. Volkmann , Andrew J. Berkley , George E.G. Sterling , Jed D. Whittaker
IPC: G01R33/035 , H01L39/22 , G06N10/00
Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.
-
公开(公告)号:US20250055457A1
公开(公告)日:2025-02-13
申请号:US18718139
申请日:2022-12-14
Applicant: D-WAVE SYSTEMS INC.
Inventor: Jed D. Whittaker , Mark H. Volkmann , Andrew J. Berkley , Reza Molavi , Paul Bunyk , Loren J. Swenson
IPC: H03K17/92 , H03K5/1252
Abstract: A method of generating a coupling gate between qubits and a superconducting integrated circuit providing a pulse source are discussed. The method includes energizing a power line connected to a pulse source, applying a signal to a control line in communication with a coupler, the coupler in communication between the two qubits, and applying a second signal to a control line in communication with a resonator. The method further includes inducing a tone on a transmission line that selectively communicates with the resonator to bias the resonator, the resonator coupling a signal to the pulse source in combination with the power line, and applying a third signal to a pulse source control line in communication with the pulse source, the pulse source applying a pulse to the coupler in response to the third signal to couple the two qubits for a duration of the coupling gate.
-
公开(公告)号:US12204002B2
公开(公告)日:2025-01-21
申请号:US18517174
申请日:2023-11-22
Applicant: D-WAVE SYSTEMS INC.
Inventor: Loren J. Swenson , Emile M. Hoskinson , Mark H Volkmann , Andrew J. Berkley , George E. G. Sterling , Jed D. Whittaker
IPC: G01R33/00 , G01R33/035 , G06N10/00 , H10N60/12
Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.
-
4.
公开(公告)号:US11424521B2
公开(公告)日:2022-08-23
申请号:US16975646
申请日:2019-02-20
Applicant: D-WAVE SYSTEMS INC.
Inventor: Jed D. Whittaker , Loren J. Swenson , Mark H. Volkmann
Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.
-
公开(公告)号:US11847534B2
公开(公告)日:2023-12-19
申请号:US17272052
申请日:2019-08-22
Applicant: D-WAVE SYSTEMS INC.
Inventor: Jed D. Whittaker , Loren J. Swenson , Ilya V. Perminov , Abraham J. Evert , Peter D. Spear , Mark H. Volkmann , Catia Baron Aznar , Michael S. Babcock
IPC: G06N10/00 , G01R33/035 , H03F19/00 , H10N69/00
CPC classification number: G06N10/00 , G01R33/0358 , H03F19/00 , H10N69/00
Abstract: A superconducting readout system employing a microwave transmission line, and a microwave superconducting resonator communicatively coupled to the microwave transmission line, and including a superconducting quantum interference device (SQUID), may be advantageously calibrated at least in part by measuring a resonant frequency of the microwave superconducting resonator in response to a flux bias applied to the SQUID, measuring a sensitivity of the resonant frequency in response to the flux bias, and selecting an operating frequency and a sensitivity of the microwave superconducting resonator based at least in part on a variation of the resonant frequency as a function of the flux bias. The flux bias may be applied to the SQUID by an interface inductively coupled to the SQUID. Calibration of the superconducting readout system may also include determining at least one of a propagation delay, a microwave transmission line delay, and a microwave transmission line phase offset.
-
公开(公告)号:US20230101616A1
公开(公告)日:2023-03-30
申请号:US17793151
申请日:2020-12-18
Applicant: D-WAVE SYSTEMS INC.
Inventor: Mark H. Volkmann , Reza Molavi , Jed D. Whittaker
Abstract: Methods for mitigating microwave crosstalk and forming a component in a superconducting integrated circuit are discussed. Mitigating microwave crosstalk involves forming a microwave shield within the superconducting integrated circuit, the superconducting integrated circuit including a microwave sensitive component. The microwave shield is formed from a base layer and one or more sides, and the footprint of the microwave sensitive component is contained within the footprint of the microwave shielding base layer, with the one or more sides extending around at least a portion of the microwave sensitive component. Forming a component involves depositing a first metal layer, depositing a dielectric layer overlying the first metal layer, the dielectric layer comprising Nb2O5 that is deposited by atomic layer deposition, and depositing a second metal layer overlying the dielectric layer.
-
公开(公告)号:US11561269B2
公开(公告)日:2023-01-24
申请号:US17388545
申请日:2021-07-29
Applicant: D-WAVE SYSTEMS INC.
Inventor: Loren J. Swenson , Andrew J. Berkley , Mark H. Volkmann , George E. G. Sterling , Jed D. Whittaker
IPC: G01R33/035 , H01L39/22 , G06N10/00
Abstract: A device is dynamically isolated via a broadband switch that includes a plurality of cascade elements in series, wherein each cascade element comprises a first set of SQUIDs in series, a matching capacitor, and a second set of SQUIDs in series. The broadband switch is set to a passing state via flux bias lines during programming and readout of the device and set to a suppression state during device's calculation to reduce operation errors at the device. A device is electrically isolated from high-frequencies via an unbiased broadband switch. A device is coupled to a tunable thermal bath that includes a broadband switch.
-
公开(公告)号:US20210384406A1
公开(公告)日:2021-12-09
申请号:US17321819
申请日:2021-05-17
Applicant: D-WAVE SYSTEMS INC.
Inventor: Shuiyuan Huang , Byong H. Oh , Douglas P. Stadtler , Edward G. Sterpka , Paul I. Bunyk , Jed D. Whittaker , Fabio Altomare , Richard G. Harris , Colin C. Enderud , Loren J. Swenson , Nicolas C. Ladizinsky , Jason J. Yao , Eric G. Ladizinsky
IPC: H01L39/24 , H01L21/768 , H01L23/522 , H01L23/528 , H01L23/532 , H01L27/18 , H01L39/12
Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
-
公开(公告)号:US20180145631A1
公开(公告)日:2018-05-24
申请号:US15572731
申请日:2016-05-11
Applicant: D-Wave Systems Inc.
Inventor: Andrew J. Berkley , Loren J. Swenson , Mark H. Volkmann , Jed D. Whittaker , Paul I. Bunyk , Peter D. Spear , Christopher B. Rich
CPC classification number: H03B15/003 , G06N10/00 , H01L39/223 , H01P7/08 , H01P7/105 , H03B2201/02 , H03H7/01
Abstract: A superconducting input and/or output system employs at least one microwave superconducting resonator. The microwave superconducting resonator(s) may be communicatively coupled to a microwave transmission line. Each microwave superconducting resonator may include a first and a second DC SQUID, in series with one another and with an inductance (e.g., inductor), and a capacitance in parallel with the first and second DC SQUIDs and inductance. Respective inductive interfaces are operable to apply flux bias to control the DC SQUIDs. The second DC SQUID may be coupled to a Quantum Flux Parametron (QFP), for example as a final element in a shift register. A superconducting parallel plate capacitor structure and method of fabricating such are also taught.
-
10.
公开(公告)号:US12206385B2
公开(公告)日:2025-01-21
申请号:US17862605
申请日:2022-07-12
Applicant: D-WAVE SYSTEMS INC.
Inventor: Jed D. Whittaker , Loren J. Swenson , Mark H. Volkmann
Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.
-
-
-
-
-
-
-
-
-