SYSTEMS AND METHODS FOR ADDRESSING DEVICES IN A SUPERCONDUCTING CIRCUIT

    公开(公告)号:US20210190885A1

    公开(公告)日:2021-06-24

    申请号:US17054631

    申请日:2019-05-16

    Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.

    SYSTEMS AND METHODS FOR QUBIT CONTROL

    公开(公告)号:US20250055457A1

    公开(公告)日:2025-02-13

    申请号:US18718139

    申请日:2022-12-14

    Abstract: A method of generating a coupling gate between qubits and a superconducting integrated circuit providing a pulse source are discussed. The method includes energizing a power line connected to a pulse source, applying a signal to a control line in communication with a coupler, the coupler in communication between the two qubits, and applying a second signal to a control line in communication with a resonator. The method further includes inducing a tone on a transmission line that selectively communicates with the resonator to bias the resonator, the resonator coupling a signal to the pulse source in combination with the power line, and applying a third signal to a pulse source control line in communication with the pulse source, the pulse source applying a pulse to the coupler in response to the third signal to couple the two qubits for a duration of the coupling gate.

    Systems and methods for addressing devices in a superconducting circuit

    公开(公告)号:US12204002B2

    公开(公告)日:2025-01-21

    申请号:US18517174

    申请日:2023-11-22

    Abstract: Superconducting integrated circuits may advantageously employ superconducting resonators coupled to a microwave transmission line to efficiently address superconducting flux storage devices. In an XY-addressing scheme, a global flux bias may be applied to a number of superconducting flux storage devices via a low-frequency address line, and individual superconducting flux storage devices addressed via application of high-frequency pulses via resonators driven by the microwave transmission line. Frequency multiplexing can be employed to provide signals to two or more resonators. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to provide Z-addressing. A low-frequency current bias may be combined with a high-frequency current in one or more superconducting resonators to eliminate a flux bias line. A low-frequency current bias may be used at room temperature to identify the presence of a DC short, an open, and/or an unexpected resistance in a superconducting resonator.

    Systems and methods for coupling a superconducting transmission line to an array of resonators

    公开(公告)号:US11424521B2

    公开(公告)日:2022-08-23

    申请号:US16975646

    申请日:2019-02-20

    Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.

    SYSTEMS AND METHODS FOR FABRICATING SUPERCONDUCTING INTEGRATED CIRCUITS

    公开(公告)号:US20230101616A1

    公开(公告)日:2023-03-30

    申请号:US17793151

    申请日:2020-12-18

    Abstract: Methods for mitigating microwave crosstalk and forming a component in a superconducting integrated circuit are discussed. Mitigating microwave crosstalk involves forming a microwave shield within the superconducting integrated circuit, the superconducting integrated circuit including a microwave sensitive component. The microwave shield is formed from a base layer and one or more sides, and the footprint of the microwave sensitive component is contained within the footprint of the microwave shielding base layer, with the one or more sides extending around at least a portion of the microwave sensitive component. Forming a component involves depositing a first metal layer, depositing a dielectric layer overlying the first metal layer, the dielectric layer comprising Nb2O5 that is deposited by atomic layer deposition, and depositing a second metal layer overlying the dielectric layer.

    Dynamical isolation of a cryogenic processor

    公开(公告)号:US11561269B2

    公开(公告)日:2023-01-24

    申请号:US17388545

    申请日:2021-07-29

    Abstract: A device is dynamically isolated via a broadband switch that includes a plurality of cascade elements in series, wherein each cascade element comprises a first set of SQUIDs in series, a matching capacitor, and a second set of SQUIDs in series. The broadband switch is set to a passing state via flux bias lines during programming and readout of the device and set to a suppression state during device's calculation to reduce operation errors at the device. A device is electrically isolated from high-frequencies via an unbiased broadband switch. A device is coupled to a tunable thermal bath that includes a broadband switch.

    Systems and methods for coupling a superconducting transmission line to an array of resonators

    公开(公告)号:US12206385B2

    公开(公告)日:2025-01-21

    申请号:US17862605

    申请日:2022-07-12

    Abstract: A superconducting circuit may include a transmission line having at least one transmission line inductance, a superconducting resonator, and a coupling capacitance that communicatively couples the superconducting resonator to the transmission line. The transmission line inductance may have a value selected to at least partially compensate for a variation in a characteristic impedance of the transmission line, the variation caused at least in part by the coupling capacitance. The coupling capacitance may be distributed along the length of the transmission line. A superconducting circuit may include a transmission line having at least one transmission line capacitance, a superconducting resonator, and a coupling inductance that communicatively couples the superconducting resonator to the transmission line. The transmission line capacitance may be selected to at least partially compensate for a variation in coupling strength between the superconducting resonator and the transmission line.

Patent Agency Ranking