Abstract:
A fungal alpha-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase and an isoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the alpha-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an alpha-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal alpha amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75 C, allowing the enzyme to be used in combination with a glucoamylase and a pullulanase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the alpha amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an alpha amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.