Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
The present invention relates to the co-expression and production of a heterologous alpha amylase and an endogenous glucoamylase in an Aspergillus strain and enzyme compositions including the same.
Abstract:
A conversion process provides using different co-cultured cell lines to express different sets of enzymes catalyzing the same process. For example, in a Simultaneous Saccharification and Co-Fermentation (SSCF) process, a starch substrate is converted to alcohol by contacting the substrate with yeast and Aspergillus niger cells. Because A. niger expresses an endogenous glucoamylase and alpha-amylase, these enzymes do not need to be added during the SSCF process.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
Abstract:
A stable, durable granule for feed compositions has a core, at least one active agent; and at least one coating. The active agent of the granule retains at least 50% activity, at least 60% activity, at least 70% activity, at least 80% activity after conditions selected from one or more of a) a feed pelleting process, b) a steam-heated feed pretreatment process, c) storage, d) storage as an ingredient in an unpelleted mixture, and e) storage as an ingredient in a feed base mix or a feed premix comprising at least one compound selected from trace minerals, organic acids, reducing sugars, vitamins, choline chloride, and compounds which result in an acidic or a basic feed base mix or feed premix.