摘要:
Described are methods and compositions relating to granular starch-converting glucoamylases and α-amylases. The enzymes can be used to perform enzymatic starch hydrolysis of granular starch at or below the gelatinization temperature of insoluble granular starch.
摘要:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
摘要:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
摘要:
Described are methods and compositions relating to granular starch-converting glucoamylases and α-amylases. The enzymes can be used to perform enzymatic starch hydrolysis of granular starch at or below the gelatinization temperature of insoluble granular starch.
摘要:
Described are methods and compositions relating to granular starch-converting glucoamylases and α-amylases. The enzymes can be used to perform enzymatic starch hydrolysis of granular starch at or below the gelatinization temperature of insoluble granular starch.
摘要:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmyl). AcAmyl has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmyl also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.
摘要:
Described are methods and compositions relating to granular starch-converting glucoamylases and α-amylases. The enzymes can be used to perform enzymatic starch hydrolysis of granular starch at or below the gelatinization temperature of insoluble granular starch.
摘要:
A fungal α-amylase is provided from Aspergillus clavatus (AcAmy1). AcAmy1 has an optimal pH of 4.5 and is operable at 30-75° C., allowing the enzyme to be used in combination with a glucoamylase in a saccharification reaction. This obviates the necessity of running a saccharification reaction as a batch process, where the pH and temperature must be readjusted for optimal use of the α-amylase or glucoamylase. AcAmy1 also catalyzes the saccharification of starch substrates to an oligosaccharide composition significantly enriched in DP2 and (DP1+DP2) compared to the products of saccharification catalyzed by an α-amylase from Aspergillus kawachii. This facilitates the utilization of the oligosaccharide composition by a fermenting organism in a simultaneous saccharification and fermentation process, for example.