EMERGENCY COMMUNICATION SYSTEM FOR AUTOMATED VEHICLES

    公开(公告)号:US20180053411A1

    公开(公告)日:2018-02-22

    申请号:US15241414

    申请日:2016-08-19

    CPC classification number: G08G1/087 G08G1/0112 G08G1/09

    Abstract: An emergency communication system for automated-vehicles includes a transceiver and a controller. The transceiver is used to communicate messages from and to an automated-vehicle that is classified as a non-emergency-vehicle. The controller is in communication with the transceiver. The controller is configured to receive a request for an emergency-certification from the automated-vehicle via the transceiver, determine when a circumstance exists that justifies the request, and grant the request when the circumstance exists. When the request is granted, the automated-vehicle is authorized to operate in a manner comparable to an emergency-vehicle.

    Humanized Steering Model For Automated Vehicles

    公开(公告)号:US20170096164A1

    公开(公告)日:2017-04-06

    申请号:US14874760

    申请日:2015-10-05

    Abstract: A humanized steering system for an automated vehicle includes one or more steering-wheels operable to steer a vehicle, an angle-sensor configured to determine a steering-angle of the steering-wheels, a hand-wheel used by an operator of the vehicle to influence the steering-angle and thereby manually steer the vehicle, a steering-actuator operable to influence the steering-angle thereby steer the vehicle when the operator does not manually steer the vehicle, a position-sensor operable to indicate a relative-position an object proximate to the vehicle, and a controller. The controller is configured to receive the steering-angle and the relative-position, determine, using deep-learning techniques, a steering-model based on the steering-angle and the relative-position, and operate the steering-actuator when the operator does not manually steer the vehicle to steer the vehicle in accordance with the steering-model, whereby the vehicle is steered in a manner similar to how the operator manually steers the vehicle.

    Redundant-controls system for an automated vehicle

    公开(公告)号:US09864374B2

    公开(公告)日:2018-01-09

    申请号:US15146504

    申请日:2016-05-04

    Abstract: A redundant-controls system suitable for use an automated vehicle includes a primary-control-device, a secondary-control-device, an occupant-detection-device, and a controller. The primary-control-device is installed in a vehicle. The primary-control-device is selectively enabled to allow operation from an operator-seat of the vehicle by an operator of the vehicle to control movement of the vehicle. The secondary-control-device is installed in the vehicle. The secondary-control-device is selectively enabled to allow operation from a passenger-seat of the vehicle by a passenger of the vehicle to control movement of the vehicle. The occupant-detection-device is used to determine an operator-state-of-awareness of the operator and a passenger-state-of-awareness of the passenger. The controller is in communication with the primary-control-device, the secondary-control-device, and the operator-detection-device. The controller is configured to selectively enable the secondary-control-device to override the primary-control-device when the passenger-state-of-awareness indicates greater awareness than the operator-state-of-awareness.

    Humanized steering model for automated vehicles

    公开(公告)号:US09914475B2

    公开(公告)日:2018-03-13

    申请号:US14874760

    申请日:2015-10-05

    Abstract: A humanized steering system for an automated vehicle includes one or more steering-wheels operable to steer a vehicle, an angle-sensor configured to determine a steering-angle of the steering-wheels, a hand-wheel used by an operator of the vehicle to influence the steering-angle and thereby manually steer the vehicle, a steering-actuator operable to influence the steering-angle thereby steer the vehicle when the operator does not manually steer the vehicle, a position-sensor operable to indicate a relative-position an object proximate to the vehicle, and a controller. The controller is configured to receive the steering-angle and the relative-position, determine, using deep-learning techniques, a steering-model based on the steering-angle and the relative-position, and operate the steering-actuator when the operator does not manually steer the vehicle to steer the vehicle in accordance with the steering-model, whereby the vehicle is steered in a manner similar to how the operator manually steers the vehicle.

    Redundant-Controls System For An Automated Vehicle

    公开(公告)号:US20170322552A1

    公开(公告)日:2017-11-09

    申请号:US15146504

    申请日:2016-05-04

    Abstract: A redundant-controls system suitable for use an automated vehicle includes a primary-control-device, a secondary-control-device, an occupant-detection-device, and a controller. The primary-control-device is installed in a vehicle. The primary-control-device is selectively enabled to allow operation from an operator-seat of the vehicle by an operator of the vehicle to control movement of the vehicle. The secondary-control-device is installed in the vehicle. The secondary-control-device is selectively enabled to allow operation from a passenger-seat of the vehicle by a passenger of the vehicle to control movement of the vehicle. The occupant-detection-device is used to determine an operator-state-of-awareness of the operator and a passenger-state-of-awareness of the passenger. The controller is in communication with the primary-control-device, the secondary-control-device, and the operator-detection-device. The controller is configured to selectively enable the secondary-control-device to override the primary-control-device when the passenger-state-of-awareness indicates greater awareness than the operator-state-of-awareness.

Patent Agency Ranking