Abstract:
An insulation detecting circuit includes a first switching unit, a second switching unit, a detecting resistor, a processing unit, and a voltage detecting unit. The second switching unit is electrically coupled to the first switching unit. The processing unit is configured to control the first and the second switching units. The voltage detecting unit obtains a first voltage value across the detecting resistor when the processing unit controls the first switching unit to be on and the second switching unit to be off. The voltage detecting unit obtains a second voltage value across the detecting resistor when the processing unit controls the first switching unit to be off and the second switching unit to be on. The processing unit operates in a first mode and configured to calculate an insulation impedance value of a power converting device according to the first and the second voltage values.
Abstract:
An arc detection apparatus (10) includes an arc detection circuit (102), a current transforming unit (128), a current input wire (108) and a current output wire (110). A power supply apparatus (20) sends an input current (Iin_a) to an electronic apparatus (30) through the current input wire (108), and the electronic apparatus (30) sends back an output current (Iin_b) to the power supply apparatus (20) through the current output wire (110), so that the current transforming unit (128) induces and generates an induced current (112). The current transforming unit (128) sends the induced current (112) to the arc detection circuit (102). The arc detection circuit (102) utilizes the induced current (112) to detect an arc.
Abstract:
A power system includes a positive terminal, a negative terminal, a neutral point, and a conversion circuit including an AC terminal, two flying capacitors, and two switch modules. The two switch modules contain five switches respectively. The two second switches are connected in series and then connected in parallel with the first flying capacitor. The two first switches are connected in series at two ends of the two second switches respectively, and the third switch is connected between a first node between the two second switches and the AC terminal. The two fifth switches are connected in series and then connected in parallel with the second flying capacitor. The two fourth switches are connected in series at the two ends of the two fifth switches respectively, and the sixth switch is connected between a second node between the two fifth switches and the AC terminal.
Abstract:
An inverter apparatus includes a first capacitor, a second capacitor, a first switch, a second switch, a third switch, a fourth switch, a first inductor and a second inductor. The first capacitor, the second capacitor, the first switch, the third switch and the first inductor form and have functions of a half bridge inverter. The first capacitor, the second capacitor, the second switch, the fourth switch and the second inductor form and have functions of a half bridge inverter. Therefore, the present invention obtains two kinds of voltages.
Abstract:
A controller controls a first switch, a second switch, a third switch, a fourth switch, a fifth switch and a sixth switch, so that an alternating current electric power is fed to an alternating current electric grid. Moreover, the controller firstly turns on a first route including the first switch and the second switch, and then the controller turns on a second route including the third switch and the fourth switch if the second route meets a first specific condition, and then the controller turns on a third route including the fifth switch and the sixth switch if the third route meets a second specific condition.
Abstract:
A test method for testing a solar power generation system is provided. The solar power generation system includes a DC to AC converter and a control unit. The DC to AC converter is electrically coupled between an external power grid and a solar panel. The control unit is configured to control the DC to AC converter to switch between a power generation mode and a test mode. When in the power generation mode, a photoelectric energy generated by the solar panel is provided to the external power grid via the DC to AC converter. When in the test mode, the control unit controls the DC to AC converter to generate a testing electrical energy by obtaining from the external power grid, to effect a test result of the solar panel when the testing electrical energy passes through the solar panel.
Abstract:
A smart grid system includes a current sensor, and plural power conversion devices coupled to an AC grid. The current sensor measures a total current flowed through the AC grid, thereby providing a measured current value. The power conversion devices include a master power conversion device and plural slave power conversion devices. The master power conversion device receives the measured current value, thereby controlling an output power of the master power conversion device and providing a first duty cycle signal according to the measured current value. A first one of the slave power conversion devices which is coupled to the master power conversion device receive the first duty cycle signal, thereby controlling an output power of the first one of the slave power conversion devices according to the first duty cycle signal. The master power conversion device and the slave power conversion devices are communicated via a daisy chain connection.
Abstract:
A smart switch system (20) includes a smart switch box (10). The smart switch box (10) includes a switch box output side (102), an output-side voltage detection unit (104), a switch control unit (106), a switch unit (108) and a switch box input side (110). The output-side voltage detection unit (104) detects a voltage of the switch box output side (102) and informs the switch control unit (106) of the voltage of the switch box output side (102). According to the voltage of the switch box output side (102), the switch control unit (106) turns on or off the switch unit (108). When the switch control unit (106) turns on the switch unit (108), an input voltage (112) sent from a direct-current voltage generation apparatus (50) is sent to the switch box output side (102) through the switch box input side (110) and the switch unit (108).
Abstract:
A power converting device includes a DC-DC converting circuit, a DC-AC converting circuit, and an insulation detecting circuit. The DC-DC converting circuit is configured to convert a DC input voltage to a DC bus voltage. The DC-AC converting circuit is electrically coupled to the DC-DC converting circuit and configured to convert the DC bus voltage to an AC voltage. The insulation detecting circuit is electrically coupled between the DC-DC converting circuit and the DC-AC converting circuit. The insulation detecting circuit is configured to detect a ground impedance value of the power converting device according to the DC bus voltage.
Abstract:
A connection structure of an inductive element includes a circuit substrate, in inductive element, at least one connection wire, a supporting element, a containing element, a positioning element, a connecting element, and a locking element. The circuit substrate has a through hole. Each connection wire has a first end connected to the inductive element, and a fixed terminal is disposed on a second end of the connection wire. The containing element is formed on the supporting element to provide a containing space. The positioning element is contained in the containing space, and provides a positioning part. The connecting element has a first connecting part and a second connecting part. The first connecting part is connected to the positioning part to clip the fixed terminal. The locking element has a locking part. The locking part is connected to the second connecting part to lock on the circuit substrate.