Abstract:
The disclosure relates to a process to provide a substrate having improved anti-soiling properties. The disclosure also relates to an anti-soiling coating composition, and to a process of making an anti-soiling coating composition. Use of the coating composition to improve anti-soiling properties of a substrate.
Abstract:
The invention relates to a process of making an anti-reflective coating composition comprising the steps of 1) preparing an oil-in-water emulsion by mixing an apolar organic compound A; a cationic addition copolymer C as emulsion stabilizer; and aqueous medium of pH 2-6; at a mass ratio C/A of 0.1 to 2, to result in 1-50 mass % (based on emulsion) of emulsified droplets of average particle size 30-300 nm; and 2) providing an inorganic oxide shell layer to the emulsified droplets by adding to the emulsion obtained in step 1) at least one inorganic oxide precursor, to result in organic-inorganic core-shell nano-particles with mass ratio core/shell of from 0.2 to 25. An advantage of this process is that the dispersion of nano-particles obtained is stable under different conditions, and allows altering its concentration and solvent system, and addition of different binders and auxiliary components.The invention also relates to a coating composition as obtained with said process, and to a process of applying a porous anti-reflective coating on a substrate using such composition, and to the resulting coated substrate.
Abstract:
The invention relates to a method of making hybrid organic-inorganic core-shell nano-particles, comprising the steps of a) providing colloidal organic particles comprising a synthetic polyampholyte as a template; b) adding at least one inorganic oxide precursor; and c) forming a shell layer from the precursor on the template to result in core-shell nano-particles. With this method it is possible to make colloidal organic template particles having an average particle size in the range of 10 to 300 nm; which size can be controlled by the comonomer composition of the polyampholyte, and/or by selecting dispersion conditions.The invention also relates to organic-inorganic or hollow-inorganic core-shell nano-particles obtained with this method, to compositions comprising such nano-particles, to different uses of said nano-particles and compositions, and to products comprising or made from said nano-particles and compositions, including anti-reflective coatings and composite materials.
Abstract:
The invention relates to a process of making an anti-reflective coating composition comprising the steps of 1) preparing an oil-in-water emulsion by mixing an apolar organic compound A; a cationic addition copolymer C as emulsion stabilizer; and aqueous medium of pH 2-6; at a mass ratio C/A of 0.1 to 2, to result in 1-50 mass % (based on emulsion) of emulsified droplets of average particle size 30-300 nm; and 2) providing an inorganic oxide shell layer to the emulsified droplets by adding to the emulsion obtained in step 1) at least one inorganic oxide precursor, to result in organic-inorganic core-shell nano-particles with mass ratio core/shell of from 0.2 to 25. An advantage of this process is that the dispersion of nano-particles obtained is stable under different conditions, and allows altering its concentration and solvent system, and addition of different binders and auxiliary components. The invention also relates to a coating composition as obtained with said process, and to a process of applying a porous anti-reflective-coating on a substrate using such composition, and to the resulting coated substrate.