摘要:
A dynamic random access memory device includes a semiconductor substrate, a plurality of parallel word lines on the substrate, and a plurality of pairs of bit lines transverse to the word lines on the substrate. An array of one-transistor memory cells are selectively arranged at the cross points as defined between the word lines and the bit lines. The array is subdivided into a plurality of subarray sections. A sense amplifier section is connected to the bit lines. The sense amplifier section includes first and second sense amplifier circuits. Adjacent bit-line pairs of the bit lines include a first bit-line pair and a second bit-line pair, one of which has a folded bit-line arrangement being included in a certain subarray section to be connected to the first sense amplifier circuit, and the other of which has an open bit-line arrangement that extends into the subarray section and another subarray section adjacent thereto, and is connected to the second sense amplifier circuit.
摘要:
A dynamic random access memory device includes a semiconductor substrate, a plurality of parallel word lines on the substrate, and a plurality of pairs of bit lines transverse to the word lines on the substrate. An array of one-transistor memory cells are selectively arranged at the cross points as defined between the word lines and the bit lines. The array is subdivided into a plurality of subarray sections. A sense amplifier section is connected to the bit lines. The sense amplifier section includes first and second sense amplifier circuits. Adjacent bit-line pairs of the bit lines include a first bit-line pair and a second bit-line pair, one of which has a folded bit-line arrangement being included in a certain subarray section to be connected to the first sense amplifier circuit, and the other of which has an open bit-line arrangement that extends into the subarray section and another subarray section adjacent thereto, and is connected to the second sense amplifier circuit.
摘要:
A semiconductor memory device includes active regions arranged on a semiconductor substrate such that those of the active regions which are adjacent in the word line direction deviate in the bit line direction, MOS transistors respectively formed in the active regions and each having a source and a drain one of which is connected to the bit line, a plurality of trenches each arranged to another set of source an drain regions and arranged to deviate in the word line direction in the respective active regions, those of the trenches which are adjacent with a through word line disposed therebetween being arranged to deviate in the bit line direction so as to be set closer to each other, a plurality of storage electrodes respectively formed in the trenches with capacitor insulative films disposed therebetween, and connection electrodes arranged between the word lines and each connecting the other of the source and drain to the storage electrode.
摘要:
A semiconductor memory device of the present invention comprises a plurality of word lines formed on a substrate, a plurality of bit lines perpendicular to the word lines and divided into bit-line groups in the column direction along the word line, each group containing three bit lines, and arrays of memory cells arranged at the intersections of word lines and bit lines, wherein two memory cells are placed at two of every three adjacent intersections arranged in each of the row and column directions, and where these memory cell arrays are divided into subarrays in the row direction, each of the cell arrays is divided into cell blocks in the row direction, two of the three bit lines in each bit-line group along the bit line are crossed each other between adjacent cell blocks, and a plurality of sense amplifiers are placed between adjacent cell arrays so as to correspond to cell blocks.
摘要:
A dynamic random access memory device includes a semiconductor substrate, a plurality of parallel word lines on the substrate, and a plurality of pairs of bit lines transverse to the word lines on the substrate. An array of one-transistor memory cells are selectively arranged at the cross points as defined between the word lines and the bit lines. The array is subdivided into a plurality of subarray sections. A sense amplifier section is connected to the bit lines. The sense amplifier section includes first and second sense amplifier circuits. Adjacent bit-line pairs of the bit lines include a first bit-line pair and a second bit-line pair, one of which has a folded bit-line arrangement being included in a certain subarray section to be connected to the first sense amplifier circuit, and the other of which has an open bit-line arrangement that extends into the subarray section and another subarray section adjacent thereto, and is connected to the second sense amplifier circuit.
摘要:
A memory cell is formed with a resistance variable element, which is interposed between first and second electrodes and can store resistance changes representing 2 or more different values, and first and second cell transistors having source terminals thereof connected to the first electrode, and gates thereof to a word line. A drain of the first cell transistor is connected to a bit line, and a drain of the second cell transistor is connected to a data line. The second electrode is connected to a source line. During a read operation, the first and second cell transistors are kept in an ON state, and a current is supplied from the bit line to the source line through the memory cell. Data is read according to the electrical potential difference between the data line and the source line.
摘要:
According to one embodiment, a memory system includes a nonvolatile first memory, a nonvolatile second memory, a data-copy processing unit and a data invalidation processing unit. The first memory has a storage capacity for n (n≧2) pages per word line. The nonvolatile second memory temporarily stores user data write-requested from a host apparatus. The data-copy processing unit executes data copy processing including reading out, in page units, the user data stored in the second memory and sequentially writing the read-out user data in page units in the first memory. The data invalidation processing unit selects, after the execution of the data copy processing, based on whether the memory cell group per word line stores user data for n pages, user data requiring backup out of the user data subjected to the data copy processing and leaves the selected user data in the second memory as backup data.
摘要:
According to one embodiment, there is provided a fusion memory including a first memory cell array formed of a NAND cell unit and a second memory cell array formed of a DRAM cell on a semiconductor substrate. The NAND cell unit is formed of a non-volatile memory cell having a two-layer gate structure in which a first gate and a second gate are stacked, and a selective transistor connecting the first and second gates of the non-volatile memory cell. The DRAM cell is formed of a cell transistor having a structure same as the structure of the selective transistor, and a MOS capacitor having a structure same as the structure of the non-volatile memory cell or the selective transistor.
摘要:
This disclosure concerns a memory including: a first memory region including memory groups including a plurality of memory cells, addresses being respectively allocated for the memory groups, the memory groups respectively being units of data erase operations; a second memory region temporarily storing therein data read from the first memory region or temporarily storing therein data to be written to the first memory region; a read counter storing therein a data read count for each memory group; an error-correcting circuit calculating an error bit count of the read data; and a controller performing a refresh operation, in which the read data stored in one of the memory groups is temporarily stored in the second memory region and is written back the read data to the same memory group, when the error bit count exceeds a first threshold or when the data read count exceeds a second threshold.
摘要:
To provide a memory system which determines a memory state such as an exhaustion level and allows a memory to be efficiently used.The memory system includes a NAND type flash memory 1 in which data can be electrically written/erased, a nonvolatile memory 2 which counts the number of erase operations of the NAND type flash memory 1 and retains the number of erase operations and a maximum number of erase operations, and a controller 3 which has a connection interface 31 to be given a self-diagnosis command from a computer 4, and retrieves the number of erase operations and the maximum number of erase operations from the nonvolatile memory 2 based on the self-diagnosis command and outputs the number of erase operations and the maximum number of erase operations to the computer 4 through the connection interface 31.