Abstract:
A mapping system (200) including: (a) at least one external marker (210,212,214,216) adapted for positioning outside a target (520) to define a target context; (b) at least one target marker (230) adapted for positioning with the target; (c) a data acquisition tool (221) configured to provide position coordinates for at least one data point (220) at the target (520); and (d) a registration module (300) adapted to output position coordinates of said at least one data point relative to at least a portion of the target context.
Abstract:
A measurement device is presented being configured to be connectable to an analyzer unit (comprising a network analyzer). The measurement device comprises a measuring unit and a calibration and control unit connected to and integral with the measuring unit. The calibration and control unit is configured to enable connection of the measuring unit to the analyzer unit. The calibration and control unit comprises a number of terminals of known RF reflection coefficients respectively and comprises a memory utility carrying recorded data indicative of said RF reflection coefficients and recorded data indicative of RF transfer coefficients of the calibration and control unit. This configuration enables calculation of the RF response of the measuring unit while remaining integral with the calibration and control unit.
Abstract:
A medical device including a tissue characterization probe having an elongated carrier for carrying an array of tissue characterization sensors arranged in a spaced-apart relationship at least along an axis of said carrier within at least a distal portion thereof, such that progression of the probe through a tissue mass provides for locating and determining a dimension of an abnormal tissue specimen inside said tissue mass based on characterization signals from the sensors in the array. The elongated carrier has two integral portions including said distal portion and a hollow portion extending between a proximal end of the carrier and said distal portion. The carrier is configured for passing a predetermined treatment tool through the hollow portion thereof and enabling at least a part of the treatment tool to project from the hollow portion and extend along the distal portion.
Abstract:
A graphical user interface (GUI) including: (a) a group definition module adapted to accept a user input defining groups; (b) a data receiver operable to receive a plurality of individual measurement input datum indicative of status of a substrate; (c) a grouping module configured to assign each of said individual measurement input datum to one of said groups to produce grouped data; and (d) an output module adapted to output the grouped data.
Abstract:
A method, apparatus and probe for examining tissue for the presence of target cells, particularly cancerous cells, by subjecting the tissue to be examined to a contrast agent containing small particles of a physical element conjugated with a biological carrier selectively bindable to the target cells. Energy pulses are applied to the examined tissue. The changes in impedance and/or optical characteristics of the examined tissue produced by the applied energy pulses are detected and utilized for determining the presence of the target cells in the examined tissue. In a described preferred embodiment, the applied energy pulses include laser pulses, and the physical element conjugated with a biological carrier is a light-sensitive semiconductor having an impedance which substantially decreases in the presence of light. The same probe used for detecting the targeted cells may also be used for destroying the cells so targeted.
Abstract:
Provided a method of automated classifying a tissue and a system thereof. The method comprises predefining a classification set comprising one or more classification parameters; acquiring data indicative of the tissue characteristics and sufficient for deriving values of said classification parameters; processing the acquired data and generating a value vector characterizing the tissue, said vector characterized by values of said classification parameters; matching the value vector to a plurality of predefined classification clusters in order to associate the tissue to be classified to an appropriate cluster, thus giving rise to a matching cluster; transforming the value vector into a score value by use of a transformation algorithm, wherein the transformation algorithm and/or parameters thereof are selected in accordance with the matching cluster; comparing the score value with a classification criterion corresponding to said matching cluster; and providing a classification decision in accordance with results of said comparing.
Abstract:
A method, apparatus and probe for examining tissue for the presence of target cells, particularly cancerous cells, by subjecting the tissue to be examined to a contrast agent containing small particles of a physical element conjugated with a biological carrier selectively bindable to the target cells. Energy pulses are applied to the examined tissue. The changes in impedance and/or optical characteristics of the examined tissue produced by the applied energy pulses are detected and utilized for determining the presence of the target cells in the examined tissue. In a described preferred embodiment, the applied energy pulses include laser pulses, and the physical element conjugated with a biological carrier is a light-sensitive semiconductor having an impedance which substantially decreases in the presence of light. The same probe used for detecting the targeted cells may also be used for destroying the cells so targeted.