Abstract:
An infrared sensor including an absorber for absorbing incident infrared power to produce a signal representing the temperature of a target object, a frame supporting a membrane which carries the absorber, the frame including a plurality of reflecting surfaces disposed about the circumference of an opening over which the membrane spans for reflecting incident infrared power toward the absorber. By concentrating incident infrared power through reflection, the temperature difference between the absorber and the surrounding frame is increased, thereby producing an increased electrical output from the sensor.
Abstract:
A semiconductor device and method by which a device chip with a micromachine is directly surface mounted to a circuit board. A capping chip is bonded to the device chip and encloses the micromachine. The capping chip has a first surface facing the device chip, an oppositely-disposed second surface, and electrical interconnects through the capping chip between the first and second surfaces. The electrical interconnects electrically communicate with runners on the device chip that are electrically connected to the micromachine, thereby providing a signal path from the micromachine to the exterior of the device. The capping chip further includes bond pads for electrical communication with the electrical interconnects. With the bond pads, the capping chip can be surface mounted to a circuit board by reflowing solder bumps formed on the bond pads. Depending on the placement of the bond pads on the capping chip, the semiconductor device can be mounted to the circuit board with the capping chip between the device chip and circuit board, or the semiconductor device can be mounted with one side of the device attached to the circuit board.
Abstract:
A process for silicon wafer-to-wafer bonding at temperatures lower than 500.degree. C. has been developed. It consists of (1) treating the cleaned surfaces to make them smooth and hydrophilic, (2) initiating the bond by making intimate contact between wafers and (3) enhancing the bond strength at elevated temperatures. This bonding process can be applied to sensor packaging.
Abstract:
An auxiliary power unit for generating electrical power. The auxiliary power unit includes a fuel cell system for combining hydrogen and oxygen to provide electrical power, and a system for storing and retrieving elemental hydrogen for supplying hydrogen to the fuel cell system. The storing and retrieving system contains at least one hydrogen storage member formed by a mass of porous silicon having interior and exterior surfaces, in which at least the interior surfaces have dangling bond sites at which reversible chemisorption of hydrogen atoms occurs. The storing and retrieving system further includes a control system for liberating the chemisorbed hydrogen atoms from the dangling bond sites and releasing the liberated hydrogen atoms as hydrogen gas for use by the fuel cell system.
Abstract:
In producing an integrated sensor, regions of silicon between compensating electronics and a sensor are electrically isolated, while the sensor is delineating and released. The described process can be performed at the end of a fabrication process after electronics processing (i.e., CMOS processing) and compensating electronics are formed. In an aspect, the sensor and a conductive bridge are simultaneously developed from a silicon-on-insulator (SOI) substrate. In an aspect, the sensor is undercut from a silicon substrate utilizing a lateral etch. A cavity is concurrently defined by the same lateral etch in the silicon layer, forming the conductive bridge connecting the sensor to a logic component. An isolation trench is defined in the silicon layer between the sensor components and the logic component. A polymer masks vertical surfaces from the lateral etch, and an insulator layer and photosensitive film mask horizontal surfaces from the lateral etch.
Abstract:
A technique for manufacturing silicon structures includes etching a cavity into a first side of an epitaxial wafer. A thickness of an epitaxial layer is selected, based on a desired depth of the etched cavity and a desired membrane thickness. The first side of the epitaxial wafer is then bonded to a first side of a handle wafer. After thinning the epitaxial wafer until only the epitaxial layer remains, desired circuitry is formed on a second side of the remaining epitaxial layer, which is opposite the first side of the epitaxial wafer.
Abstract:
An integrated sensor comprising a thermopile transducer and signal processing circuitry that are combined on a single semiconductor substrate, such that the transducer output signal is sampled in close vicinity by the processing circuitry. The sensor comprises a frame formed of a semiconductor material that is not heavily doped, and with which a diaphragm is supported. The diaphragm has a first surface for receiving thermal (e.g., infrared) radiation, and comprises multiple layers that include a sensing layer containing at least a pair of interlaced thermopiles. Each thermopile comprises a sequence of thermocouples, each thermocouple comprising dissimilar electrically-resistive materials that define hot junctions located on the diaphragm and cold junctions located on the frame. The signal processing circuitry is located on the frame and electrically interconnected with the thermopiles. The thermopiles are interlaced so that the output of one of the thermopiles increases with increasing temperature difference between the hot and cold junctions thereof, while the output of the second thermopile decreases with increasing temperature difference between its hot and cold junctions.
Abstract:
This invention generally relates to the provision of a vent path during the bonding of silicon wafers and the subsequent encapsulation of the individual devices. A double-sided polished silicon wafer is used for the device wafer. The device wafer includes circuitry, thin membranes and metal interconnections. When bonding a bottom wafer to the device wafer, a vented path exists between the wafers. The venting path includes serpentine shape channel formed by interdigitated fingers and cavities. The cavity and the interdigitated patterns can be etched either together or separately into either wafer. A top wafer has a cavity formed therein. When the top device and bottom wafers are bonded together, the venting path is sealed by dipping the device in a sealing liquid. The serpentine path prevents the sealing liquid from reaching the cavity.
Abstract:
A motion sensor in the form of an angular rate sensor and a method of making a sensor are provided and includes a support substrate and a silicon sensing ring supported by the substrate and having a flexive resonance. Drive electrodes apply electrostatic force on the ring to cause the ring to resonate. Sensing electrodes sense a change in capacitance indicative of vibration modes of resonance of the ring so as to sense motion. A plurality of silicon support rings connect the substrate to the ring. The support rings are located at an angle to substantially match a modulus of elasticity of the silicon, such as about 22.5 degrees and 67.5 degrees, with respect to the crystalline orientation of the silicon.
Abstract:
A technique for forming anti-stiction bumps on a bottom surface of a micro-electro mechanical (MEM) structure includes a number of process steps. The MEM structure is fabricated from an assembly that includes a support substrate bonded to a single-crystal semiconductor layer, via an insulator layer. A plurality of holes are formed through the single-crystal semiconductor layer to the insulator layer on an interior portion of a defined movable structure. A portion of the insulator layer underneath the holes is removed. The holes are then filled with a conformal film that extends below a lower surface of the defined movable structure to provide a plurality of anti-stiction bumps. A trench is then formed through the single-crystal semiconductor layer to the insulator layer to form the defined movable structure. Finally, a remainder of the insulator layer underneath the defined movable structure is removed to free the defined movable structure.