摘要:
There are described certain DNA sequences which encode subtilisins wherein the amino acid sequence of such substilisins has been modified at a position equivalent to +225 in Bacillus amyloliquefaciens, such that an amino acid selected from the group consisting of alanine, leucine, methionine, glutamine, valine and serine, has been substituted for the amino acid residues naturally occuring at such position.
摘要:
There are described certain subtilisins wherein the amino acid sequence of such subtilisins has been modified at a position equivalent to +225 in Bacillus amyloliquefaciens, such that an amino acid selected from the group consisting of alanine, leucine, methionine, glutamine, valine, and serine, has been substituted for the amino acid residue naturally occurring at such position.
摘要:
Novel carbonyl hydrolase mutants derived from the DNA sequences of naturally-occurring or recombinant non-human carbonyl hydrolases are disclosed. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to generate the substitution of one or more amino acid residues in the amino acid sequence of a precursor carbonyl hydrolase. Such mutant carbonyl hydrolases have properties which are different from those of the precursor hydrolase and are especially useful in detergent formulations. The substituted amino acid residues correspond to position +123 and/or +274 in Bacillus amyloliquefaciens subtilisin.
摘要:
Novel carbonyl hydrolase mutants derived from the DNA sequences of naturally-occurring or recombinant non-human carbonyl hydrolases are disclosed. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to generate the substitution of one or more amino acid residues in the amino acid sequence of a precursor carbonyl hydrolase. Such mutant carbonyl hydrolases have properties which are different from those of the precursor hydrolase and are especially useful in detergent formulations. The substituted amino acid residues correspond to position +123 and/or +274 in Bacillus amyloliquefaciens subtilisin.
摘要:
Novel carbonyl hydrolase variants derived from the DNA sequences of naturally-occurring or recombinant non-human carbonyl hydrolases are disclosed. The variant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to generate the substitution of a plurality of amino acid residues in the amino acid sequence of a precursor carbonyl hydrolase. Such variant carbonyl hydrolases have properties which are different from those of the precursor hydrolase, such as altered proteolytic activity, altered stability, etc. The substituted amino acid residues correspond to positions +76 in combination with one or more of the following residues +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265 and/or +274 in Bacillus amyloliquefaciens subtilisin.
摘要:
Novel carbonyl hydrolase variants derived from the DNA sequences of naturally-occurring or recombinant non-human carbonyl hydrolases are disclosed. The variant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to generate the substitution of a plurality of amino acid residues in the amino acid sequence of a precursor carbonyl hydrolase. Such variant carbonyl hydrolases have properties which are different from those of the precursor hydrolase, such as altered proteolytic activity, altered stability, etc. The substituted amino acid residues correspond to positions +76 in combination with one or more of the following residues +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265 and/or +274 in Bacillus amyloliquefaciens subtilisin.
摘要:
Modified enzymes are provided in which at least one amino acid, such as asparagine, leucine, methionine or serine, of an enzyme is replaced with a cysteine and the thiol hydrogen is replaced with a substituent group providing a thiol side chain selected from the group consisting of: a) —SR1R2, wherein R1 is an alkyl and R2 is a charged or polar moiety; b) —SR3, wherein R3 is a substituted or unsubstituted phenyl; c) —SR4, wherein R4 is substituted or unsubstituted cyclohexyl; d) —SR5, wherein R5 is C10-C15 alkyl; and e) —SR6 wherein R6 is a C1-6 alkyl. Also, methods of producing the modified enzymes are provided, as well as detergent and feed additives and a composition for the treatment of a textile. A method for using the modified enzymes in organic synthesis is additionally provided. Further, modified enzymes having improved activity, altered pH profile and/or wash performance are provided.
摘要:
Textile fibers are treated with enzymes in the absence of surfactants, with the effect of increasing the wettability and absorbency of the fibers. The enzymes are pectinases, cellulases, proteases, lipases or combinations thereof. The wetting properties of cotton fibers are found to be most substantially improved by treatment with a mixture of cellulase and pectinase. The effects of five hydrolyzing enzymes on improving the hydrophilicity of several polyester fabrics have been studied. Four out of the five lipases studied improve the water wetting and absorbent properties of the regular polyester fabrics more than alkaline hydrolysis under optimal conditions (3N NaOH at 55.degree. C. for 2 hours). Compared to aqueous hydrolysis, the enzyme reactions have shown to be effective under more moderate conditions, including a relatively low concentration (0.01 g/L), a shorter reaction time (10 minutes), at an ambient temperature (25.degree. C.). Contrary to the results with alkaline hydrolysis, the improved water wettability is accompanied by full strength retention. Lipase has also shown to be effective in improving the wetting and absorbent properties of sulfonated polyester and microdenier polyester fabrics.
摘要:
Textile fibers are treated with enzymes in the absence of surfactants, with the effect of increasing the wettability and absorbency of the fibers. The enzymes are pectinases, cellulases, proteases, lipases or combinations thereof. The wetting properties of cotton fibers are found to be most substantially improved by treatment with a mixture of cellulase and pectinase. The effects of five hydrolyzing enzymes on improving the hydrophilicity of several polyester fabrics have been studied. Four out of the five lipases studied improve the water wetting and absorbent properties of the regular polyester fabrics more than alkaline hydrolysis under optimal conditions (3N NaOH at 55° C. for 2 hours). Compared to aqueous hydrolysis, the enzyme reactions have shown to be effective under more moderate conditions, including a relatively low concentration (0.01 g/L), a shorter reaction time (10 minutes), at an ambient temperature (25° C.). Contrary to the results with alkaline hydrolysis, the improved water wettability is accompanied by full strength retention. Lipase has also shown to be effective in improving the wetting and absorbent properties of sulfonated polyester and microdenier polyester fabrics.