摘要:
A method, apparatus and system for controlling the amount of heat transferred to a process region (30) of a workpiece (W) from exposure with a pulse of radiation (10), which may be in the form of a scanning beam (B), using a thermally induced phase switch layer (60). The apparatus of the invention is a film stack (6) having an absorber layer (50) deposited atop the workpiece, such as a silicon wafer. A portion of the absorber layer covers the process region. The absorber layer absorbs radiation and converts the absorbed radiation into heat. The phase switch layer is deposited above or below the absorber layer. The phase switch layer may comprise one or more thin film layers, and may include a thermal insulator layer and a phase transition layer. Because they are in close proximity, the portion of the phase switch layer covering the process region has a temperature that is close to the temperature of the process region. The phase of the phase switch layer changes from a first phase (e.g., solid) to a second phase (e.g., liquid or vapor) at a phase transition temperature (TP). During this phase change, the phase switch layer absorbs heat but does not significantly change temperature. This limits the temperature of the absorber layer and the process region since both are close to the phase change layer.
摘要:
A method of this invention includes annealing at least one region of a substrate with a short pulse of particles. The particles can be electrons, protons, alpha particles, other atomic or molecular ions or neutral atoms and molecules. The substrate can be composed of a semiconductor material, for example. The particles can include dopant atoms such as p-type dopant atoms such as boron (B), aluminum (Al), gallium (Ga), or indium (In), and n-type dopant atomic species including arsenic (As), phosphorus (P), or antimony (Sb). The particles can also include silicon (Si) or germanium (Ge) atoms or ionized gas atoms including those of hydrogen (He), oxygen (O), nitrogen (N), neon (Ne), argon (Ar), or krypton (Kr). The particles can be used to anneal dopant atoms previously implanted into the substrate. Alternatively, the particle species can be chosen to include the desired implant dopant, the energy of the particle may be chosen to achieve the desired implant depth, and the energy, dose and pulse duration may be chosen to anneal the implanted region during the pulse. This embodiment of the method performs implantation and activation in a single step. If no change in the electrical state of the substrate is required, the particles can include silicon (Si), and germanium (Ge) atoms.
摘要:
The invention is directed to methods for determining the wavelength, pulse length and other important characteristics of radiant energy used to anneal or to activate the source and drain regions of an integrated transistor device which has been doped through implantation of dopant ions, for example. In general, the radiant energy pulse is determined to have a wavelength from 450 to 900 nanometers, a pulse length of 0.1 to 50 nanoseconds, and an exposure energy dose of from 0.1 to 1.0 Joules per square centimeter. A radiant energy pulse of the determined wavelength, pulse length and energy dose is directed onto the source and drain regions to trigger activation. In cases where the doped region has been rendered amorphous, activation requires crystallization using the crystal structure at the boundaries as a seed. In this case the radiant energy pulse causes the source and drain regions to crystallize with the same crystallographic orientation as the underlying substrate with the dopant ions incorporated into the crystalline lattice so that the source and drain regions are activated. To enhance absorption of the radiant energy used for annealing the doped regions, an anti-reflective layer can be formed over the doped regions before exposure. The radiant energy can be generated by a laser or other relatively intense, pulsed, radiant energy source. Selection of the source should be based on efficiency, the ability to distribute energy uniformly over an extended area and the ability to accurately control the energy content of a single pulse.
摘要:
A chuck for supporting a wafer and maintaining a constant background temperature across the wafer during laser thermal processing (LTP) is disclosed. The chuck includes a heat sink and a thermal mass in the form of a heater module. The heater module is in thermal communication with the heat sink, but is physically separated therefrom by a thermal insulator layer. The thermal insulator maintains a substantially constant power loss at least equal to the maximum power delivered by the laser, less that lost by radiation and convection. A top plate is arranged atop the heater module, supports the wafer to be processed, and provides a contamination barrier. The heater module is coupled to a power supply that is adapted to provide varying amounts of power to the heater module to maintain the heater module at the constant background temperature even when the wafer experiences a spatially and temporally varying heat load from an LTP laser beam. Thus, heat from the laser is transferred from the wafer to the heat sink via the heater module and the insulator layer. In the absence of any laser heating, heat is also transferred from the heater module to the wafer as needed to maintain the constant background temperature.
摘要:
A method and apparatus for performing laser thermal processing (LTP) using one or more two-dimensional arrays of laser diodes and corresponding one or more LTP optical systems to form corresponding one or more line images. The line images are scanned across a substrate, e.g., by moving the substrate relative to the one or more line images. The apparatus also includes one or more recycling optical systems arranged to re-image reflected annealing radiation back onto the substrate. The use of one or more recycling optical systems greatly improves the heating efficiency and uniformity during LTP.
摘要:
Apparatus and methods for thermally processing a substrate with scanned laser radiation are disclosed. The apparatus includes a continuous radiation source and an optical system that forms an image on a substrate. The image is scanned relative to the substrate surface so that each point in the process region receives a pulse of radiation sufficient to thermally process the region.
摘要:
A method and apparatus for performing laser thermal processing (LTP) using a two-dimensional array of laser diodes to form a line image, which is scanned across a substrate. The apparatus includes a two-dimensional array of laser diodes, the radiation from which is collimated in one plane using a cylindrical lens array, and imaged onto the substrate as a line image using an anomorphic, telecentric optical imaging system. The apparatus also includes a scanning substrate stage for supporting a substrate to be LTP processed. The laser diode radiation beam is incident on the substrate at angles at or near the Brewster's angle for the given substrate material and the wavelength of the radiation beam, which is linearly P-polarized. The use of a two-dimensional laser diode array allows for a polarized radiation beam of relatively high energy density to be delivered to the substrate, thereby allowing for LTP processing with good uniformity, reasonably short dwell times, and thus reasonably high throughput.
摘要:
Chuck methods and apparatus for supporting a semiconductor substrate and maintaining it at a substantially constant background temperature even when subject to a spatially and temporally varying thermal load. Chuck includes a thermal compensating heater module having a sealed chamber containing heater elements, a wick, and an alkali metal liquid/vapor. The chamber employs heat pipe principles to equalize temperature differences in the module. The spatially varying thermal load is quickly made uniform by thermal conductivity of the heater module. Heatsinking a constant amount of heat from the bottom of the heater module accommodates large temporal variations in the thermal heat load. Constant heat loss is preferably made to be at least as large as the maximum variation in the input heat load, less heat lost through radiation and convection, thus requiring a heat input through electrical heating elements. This allows for temperature control of the chuck, and hence the substrate.
摘要:
Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.
摘要:
Apparatus and method for performing laser thermal annealing (LTA) of a substrate using an annealing radiation beam that is not substantially absorbed in the substrate at room temperature. The method takes advantage of the fact that the absorption of long wavelength radiation (1 micron or greater) in some substrates, such as undoped silicon substrates, is a strong function of temperature. The method includes heating the substrate to a critical temperature where the absorption of long-wavelength annealing radiation is substantial, and then irradiating the substrate with the annealing radiation to generate a temperature capable of annealing the substrate.