摘要:
An object sensor includes at least one sensor device which is integrated with a fluid source. The object sensor includes a sensor housing having an object passage through which an object is moved. The object sensor further includes a fluid passage through which a flow of fluid passes. The object passage communicates with the fluid passage. A fluid source is positioned to generate a flow of fluid through the fluid passage. When an object, such as a paper sheet, moves through the object passage the object will obstruct or eclipse the flow of fluid produced by the fluid source and flowing through the fluid passage to diminish the flow of fluid. As a result, the impeded flow of fluid is sensed and one or more of a position, a presence and/or an absence of the object in the object passage is detected.
摘要:
A pressure sensor is provided which can detect the presence, absence or magnitude of pressure. The pressure sensor includes a sensor membrane and a sensor device. The sensor membrane is flexible and may be constructed of a conductive material or may include a flexible film attached to a conductive film. The sensor device includes an electrode substrate having an electrode surface and a set of electrodes disposed on the electrode surface. As pressure is applied to the sensor membrane, the sensor membrane distends or deforms towards the electrode set positioned on the electrode surface. As sufficient pressure is applied, the sensor membrane will make both electrical and mechanical contact with at least two of the electrodes. Since the sensor membrane is conductive, the contacted electrodes will be in electrical connection with each other. As pressure is increased, additional electrodes will be contacted and placed in electrical contact with each other. As a result, the presence, absence or magnitude of pressure exerted on the sensor membrane may be determined. The pressure sensor may be utilized in a variety of environments to sense either fluid pressure or physical contact pressure.
摘要:
A pressure sensor is provided which can detect the presence, absence or magnitude of pressure, as well as a pressure profile. The pressure sensor includes a sensor membrane and a sensor device. The sensor membrane is flexible and may be constructed of a conductive material or may include a flexible film attached to a conductive film. The sensor device includes a sensor strip, a voltage source, and an electrical sensor. The sensor strip includes both a conductive strip and a resistive strip. The conductive strip is arranged parallel to the resistive strip. As pressure is applied to the sensor membrane, the sensor membrane distends or deforms towards the sensor strip. As sufficient pressure is applied, the sensor membrane will make both electrical and mechanical contact with both the conductive strip and the resistive strip at a point along the length of the sensor strip. Since the sensor membrane is conductive, the conductive strip and the resistive strip will be in electrical connection with each other. As the point of application of pressure is varied, the point at which the conductive strip and the resistive strip are connected will vary. As a result, the pressure profile exerted on the sensor membrane may be determined. The pressure sensor may be utilized in a variety of environments to sense a wide variety of pressures including either fluid pressure or physical contact pressure.
摘要:
An X-ray imaging apparatus includes a top transparent conductive layer and a bottom transparent conductive layer electrically connected to the top transparent conductive layer. The apparatus also includes an X-ray field modulator positioned adjacent to the bottom transparent conductive layer and an electro-optic layer positioned between the X-ray field modulator and the top transparent conductive layer. The X-ray field modulator is configured to modulate one of a resistance and a charge level therethrough when exposed to different X-ray levels to thereby create different levels of voltage drop across the electro-optic layer. In addition, the different levels of voltage drop causes varying optical properties to appear in the electro-optic layer.
摘要:
Provided is a low cost system and method for forming electronic devices, especially large surface area devices. The process of imprint lithography is combined with alternate manufacturing techniques to fabricate the devices. Initially, a template imprints a three-dimensional pattern into a resist layer deposited on a flexible substrate. The resist layer is cured using ultraviolet light or other curing techniques. After curing, the 3-D pattern is modified using one of several techniques to include inkjetting, electrodeposition or laser patterning. In one embodiment, a semi-fluid material may be jetted into channels formed in the pattern, thereby forming conductive or insulating lead lines. Alternatively, a two-dimensional pattern may be jetted onto the resist layer. Final processing may include multiple etch-mask-etch steps. The integration of techniques into a single system provides a low cost, efficient method for manufacturing high quality, large surface area electronic devices.
摘要:
Disclosed is an anti-counterfeiting system. In a particular embodiment, the anti-counterfeiting system has a first structure having a plurality of three-dimensional nanostructures, each having a height dimension less than a wavelength of visible light. In addition, there is a second structure having a second plurality of three-dimensional nanostructures, each having a height dimension less than a wavelength of visible light. The first and second structures are configured to couple together. An alignment mechanism is operable to align the first structure to the second structure and establish proximate contact between the first and second pluralities of nanostructures. With respect to the first and second structures, each encodes part of an authentication key. The authentication key includes pre-determined elements and interaction modalities. The resolution of the structures makes them copy-resistant. An associated method of use is also provided.
摘要:
This invention provides a thin film device with layer isolation structures. Specifically, a plurality of patterned thin film device layers provide a first rail and a second rail. There is at least one overpass between the first rail and the second rail. The overpass is defined by an array of spaced holes disposed transversely through the continuous material of the first rail on either side of the overpass. The holes are in communication with isolation voids adjacent to the second rail adjacent to the overpass.
摘要:
This invention provides a method of forming at least one pressure switch thin film device. The method includes providing a substrate and depositing a plurality of thin film device layers as a stack upon the substrate. An imprinted 3D template structure is provided upon the plurality of thin film device layers. The plurality of thin film device layers and the 3D template structure are then etched and at least one thin film device layer is undercut to provide a plurality of aligned electrical contact pairs and adjacent spacer posts. A flexible membrane providing a plurality of separate electrical contacts is deposited upon the spacer posts, the separate electrical contacts overlapping the contact pairs. The spacer posts provide a gap between the electrical contacts and the contact pairs.
摘要:
Provided is an article of manufacturer with anti-counterfeit properties a consumable, having taggant nanoparticles dispersed within it. Each taggant nanoparticle has at least one known physical characteristic such as, the taggant nanoparticles being a predetermined combination of nanoparticles providing at least two different taggant physical characteristics as a taggant code encoding product identification for the consumable so as to permit identification of the consumable. The physical characteristics in an embodiment include a combination of fluorescence, particle size, shape, and/or magnetic properties.
摘要:
An addressing circuit is operable to address one or more memory elements in a cross-point memory array. The addressing circuit includes first and second sets of address lines for addressing the cross-point memory array. The address circuit also includes pull-up and pull-down circuit elements. Both the pull-up and pull-down circuit elements and the address lines include cross-point resistive elements.