摘要:
A patient state is detected with at least one classification boundary generated by a supervised machine learning technique, such as a support vector machine. In some examples, the patient state detection is used to at least one of control the delivery of therapy to a patient, to generate a patient notification, to initiate data recording, or to evaluate a patient condition. In addition, an evaluation metric can be determined based on a feature vector, which is determined based on characteristics of a patient parameter signal, and the classification boundary. Example evaluation metrics can be based on a distance between at least one feature vector and the classification boundary and/or a trajectory of a plurality of feature vectors relative to the classification boundary over time.
摘要:
A patient state is detected with at least one classification boundary generated by a supervised machine learning technique, such as a support vector machine. In some examples, the patient state detection is used to at least one of control the delivery of therapy to a patient, to generate a patient notification, to initiate data recording, or to evaluate a patient condition. In addition, an evaluation metric can be determined based on a feature vector, which is determined based on characteristics of a patient parameter signal, and the classification boundary. Example evaluation metrics can be based on a distance between at least one feature vector and the classification boundary and/or a trajectory of a plurality of feature vectors relative to the classification boundary over time.
摘要:
A patient state is detected with at least one classification boundary generated by a supervised machine learning technique, such as a support vector machine. The patient state can be, for example, a patient posture state. In some examples, the patient state detection is used to at least one of control the delivery of therapy to a patient, to generate a patient notification, to initiate data recording, or to evaluate a patient condition. In addition, an evaluation metric can be determined based on a feature vector, which is determined based on characteristics of a patient parameter signal, and the classification boundary. Example evaluation metrics can be based on a distance between at least one feature vector and the classification boundary and/or a trajectory of a plurality of feature vectors relative to the classification boundary over time.
摘要:
A patient state is detected with at least one classification boundary generated by a supervised machine learning technique, such as a support vector machine. In some examples, the patient state detection is used to at least one of control the delivery of therapy to a patient, to generate a patient notification, to initiate data recording, or to evaluate a patient condition. In addition, an evaluation metric can be determined based on a feature vector, which is determined based on characteristics of a patient parameter signal, and the classification boundary. Example evaluation metrics can be based on a distance between at least one feature vector and the classification boundary and/or a trajectory of a plurality of feature vectors relative to the classification boundary over time.
摘要:
Various embodiments concern identifying a biomarker in the presence of electrical stimulation. Various embodiments concern delivering electrical stimulation to a patient and sensing one or more signals while the electrical stimulation is being delivered, the one or more signals including data indicative of physiological activity. Various embodiments further include determining an intensity of the electrical stimulation and determining whether the data indicates the presence of a biomarker based on a variable threshold, the variable threshold being variable based on the intensity of the electrical stimulation. Various embodiments concern determining a relationship between stimulation intensity and a biomarker parameter to determine the variability of the variable threshold.
摘要:
Bioelectrical signals may be sensed within a brain of a patient with a plurality of sense electrode combinations. A stimulation electrode combination for delivering stimulation to the patient to manage a patient condition may be selected based on the frequency band characteristics of the sensed signals. In some examples, a stimulation electrode combination associated with the sense electrode combination that sensed a bioelectrical brain signal having a relatively highest relative beta band power level may be selected to deliver stimulation therapy to the patient. Other frequency bands characteristics may also be used to select the stimulation electrode combination.
摘要:
Brain signals may be monitored at different locations of a mood circuit in order to determine a mood state of the patient. A relationship (e.g., a ratio) between frequency band characteristics of the monitored brain signals may be indicative of a particular mood state. In some examples, therapy parameter values that define the therapy delivered to the patient may be selected to maintain a target relationship (e.g., a target ratio) between the frequency band characteristics of the brain signals monitored within the mood circuit. In addition, in some examples, therapy delivery to the patient may be controlled based on the frequency band characteristics of brain signals sensed at different portions of the mood circuit.
摘要:
Various embodiments concern identifying a biomarker in the presence of electrical stimulation. Various embodiments concern delivering electrical stimulation to a patient and sensing one or more signals while the electrical stimulation is being delivered, the one or more signals including data indicative of physiological activity. Various embodiments further include determining an intensity of the electrical stimulation and determining whether the data indicates the presence of a biomarker based on a variable threshold, the variable threshold being variable based on the intensity of the electrical stimulation. Various embodiments concern determining a relationship between stimulation intensity and a biomarker parameter to determine the variability of the variable threshold.
摘要:
An apparatus for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.
摘要:
A medical device system that includes a brain monitoring element, cardiac monitoring element and a processor. The processor is configured to receive a brain signal from the brain monitoring element and a cardiac signal from the cardiac monitoring element. The processor is further configured to determine at least one reference point for a brain event time period by evaluation of the brain signal. The processor further identifies a first portion of the cardiac signal based on the at least one reference point of the brain event time period.