Nitride-based laser diode with GaN waveguide/cladding layer
    6.
    发明授权
    Nitride-based laser diode with GaN waveguide/cladding layer 有权
    氮化镓基激光二极管与GaN波导/包层

    公开(公告)号:US07123637B2

    公开(公告)日:2006-10-17

    申请号:US10394559

    申请日:2003-03-20

    IPC分类号: H01S5/00

    摘要: A nitride-based laser diode structure utilizing a single GaN:Mg waveguide/cladding layer, in place of separate GaN:Mg waveguide and AlGaN:Mg cladding layers used in conventional nitride-based laser diode structures. When formed using an optimal thickness, the GaN:Mg layer produces an optical confinement that is comparable to or better than conventional structures. A thin AlGaN tunnel barrier layer is provided between the multiple quantum well and a lower portion of the GaN:Mg waveguide layer, which suppresses electron leakage without any significant decrease in optical confinement. A split-metal electrode is formed on the GaN:Mg upper waveguide structure to avoid absorption losses in the upper electrode metal. A pair of AlGaN:Si current blocking layer sections are located below the split-metal electrode sections, and separated by a gap located over the active region of the multiple quantum well.

    摘要翻译: 使用单个GaN:Mg波导/包覆层的氮化物基激光二极管结构代替用于常规氮化物基激光二极管结构中的单独的GaN:Mg波导和AlGaN:Mg包覆层。 当使用最佳厚度形成时,GaN:Mg层产生与传统结构相当或更好的光学约束。 在多量子阱和GaN:Mg波导层的下部之间提供薄的AlGaN隧道势垒层,其抑制电子泄漏,而不会明显减少光学限制。 在GaN:Mg上部波导结构上形成裂缝金属电极,以避免上部电极金属中的吸收损失。 一对AlGaN:Si电流阻挡层部分位于裂缝金属电极部分下方,并被位于多量子阱的有源区上方的间隙分开。

    Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission
    9.
    发明授权
    Algainn pendeoepitaxy led and laser diode structures for pure blue or green emission 有权
    Algainn pendeoeitaxy led和激光二极管结构,用于纯蓝色或绿色发射

    公开(公告)号:US06285696B1

    公开(公告)日:2001-09-04

    申请号:US09363314

    申请日:1999-07-28

    IPC分类号: H01S319

    CPC分类号: H01L33/32 H01L33/007

    摘要: Group III-V nitride semiconductors are used as optoelectronic light emitters. The semiconductor alloy InGaN is used as the active region in nitride laser diodes and LEDs, as its bandgap energy can be tuned by adjusting the alloy composition, to span the entire visible spectrum. InGaN layers of high-indium content, as required for blue or green emission are difficult to grow, however, because the poor lattice mismatch between GaN and InGaN causes alloy segregation. In this situation, the inhomogeneous alloy composition results in spectrally impure emission, and diminished optical gain. To suppress segregation, the high-indium-content InGaN active region may be deposited over a thick InGaN layer, substituted for the more typical GaN. First depositing a thick InGaN layer establishes a larger lattice parameter than that of GaN. Consequently, a high indium content heterostructure active region grown over the thick InGaN layer experiences significantly less lattice mismatch compared to GaN. Therefore, it is less likely to suffer structural degradation due to alloy segregation. Thus, the thick GaN structure enables the growth of a high indium content active region with improved structural and optoelectronic properties, leading to LEDs with spectrally pure emission, and lower threshold laser diodes.

    摘要翻译: III-V族氮化物半导体用作光电子发光体。 半导体合金InGaN用作氮化物激光二极管和LED中的有源区,因为其带隙能量可以通过调整合金组成来调整,以跨越整个可见光谱。 然而,蓝色或绿色发射所需的高铟含量的InGaN层难以生长,但是由于GaN和InGaN之间的不良晶格失配导致合金偏析。 在这种情况下,不均匀的合金组成导致光谱不纯的发射,并减少了光学增益。 为了抑制偏析,可以在厚的InGaN层上沉积高铟含量的InGaN有源区,代替更典型的GaN。 首先沉积厚的InGaN层形成比GaN更大的晶格参数。 因此,与GaN相比,在厚的InGaN层上生长的高铟含量的异质结构有源区域的晶格失配明显减少。 因此,由于合金分离而不太可能遭受结构劣化。 因此,厚的GaN结构能够增加具有改进的结构和光电性质的高铟含量活性区域,导致具有光谱纯发射的LED和较低阈值的激光二极管。