Abstract:
A maintenance apparatus for a printhead, the apparatus having a rotatable shaft; a porous material about the shaft; and a mechanism for rotating the shaft so that the porous material rotates against the printhead, the porous material being configured to absorb fluid from the printhead during the rotation.
Abstract:
A method of maintaining a printhead, the method having, when printing with the printhead, translating a modular sled relative to the printhead so as to align a media platen module supported by the sled with the printhead; after printing with the printing, translating the sled relative to the printhead so as to align a wiper module supported by the sled with the printhead and operating a wiper roller of the wiper module so as to wipe a printing face of the printhead; and after the wiping and prior to commencement of printing with the printhead, translating the sled relative to the printhead so as to align a capper module supported by the sled with the printhead so as to cap the printing face of the printhead.
Abstract:
A disposable blood test device comprises a substrate configured for carrying a chemical reagent and circuitry formed on the substrate. The circuitry comprises a sensor portion associated with the chemical reagent to enable measurement of at least one of a presence and a concentration of a blood analyte, and an information storage portion configured to store information indicative of a property of the chemical reagent.
Abstract:
A device for sorting particles. The device may include a channel structure that defines a channel having an inlet and first and second outlets. The device also may include first and second transport mechanisms. The first transport mechanism may be configured to create a particle stream of first particles and one or more second particles. Each particle may move along the channel from the inlet toward the first outlet and may be disposed in a fluid supported by the channel structure. The second transport mechanism may be configured to be pulse-activated to selectively move at least one of the second particles from the particle stream and toward the second outlet.
Abstract:
A device for sorting particles. The device may include a channel structure that defines a channel having an inlet and first and second outlets. The device also may include first and second transport mechanisms. The first transport mechanism may be configured to create a particle stream of first particles and one or more second particles. Each particle may move along the channel from the inlet toward the first outlet and may be disposed in a fluid supported by the channel structure. The second transport mechanism may be configured to be pulse-activated to selectively move at least one of the second particles from the particle stream and toward the second outlet.
Abstract:
A medicament ejector is provided which includes an ejection mechanism and a service mechanism. The ejection mechanism includes at least one ejection port configured to eject a medicament-containing fluid. The service mechanism is selectively deployable to service the at least one ejection port.
Abstract:
A silicon die having an orifice layer with plural openings formed therein defines a drop ejection device for use in a handheld inhaler. An underlying control layer defines fluid chambers, each carrying a heat transducer. A control system energizes selected heat transducers to heat fluid in the chambers, vaporizing the fluid, which is ejected through the orifices in small droplets.
Abstract:
A system, including methods and apparatus, for microfluidic analysis of a nucleic acid target in a nucleic acid mixture. The system includes a method to preselect the target from the mixture before amplification. Preselection enriches the mixture for the target by retaining the target on a target-selective receptor and then removing unretained non-target nucleic acids. The preselected target then may be amplified from the enriched mixture and assayed. Devices configured to carry out the method are also disclosed.
Abstract:
A biochip device for electrical analysis of biological membranes. The device may include a substrate assembly defining an array of apertures and including thin-film devices configured to sense an electrical property of biological membranes that seal the apertures. The device also may include an electrical interface coupled electrically to the thin-film devices and configured to electrically couple the thin-film devices to a control apparatus. The electrical interface may define a plurality of interface elements, and the apertures may be in excess over the interface elements.
Abstract:
A biochip device for electrical analysis of biological membranes. The device may include a substrate assembly defining an array of apertures and including thin-film devices configured to sense an electrical property of biological membranes that seal the apertures. The device also may include an electrical interface coupled electrically to the thin-film devices and configured to electrically couple the thin-film devices to a control apparatus. The electrical interface may define a plurality of interface elements, and the apertures may be in excess over the interface elements.