摘要:
A memory cell including a substrate, at least one deep trench capacitor in the substrate, at least one FET in the substrate disposed over at least a portion of the at least one deep trench capacitor, and at least one isolation region in the substrate surrounding the at least one FET and having a greater depth than the at least one FET. The at least one FET includes a gate disposed over at least a portion of the at least one deep trench capacitor and doped regions arranged on adjacent sides of the gate and separated from the gate by an insulating layer.
摘要:
A memory cell including a substrate, at least one deep trench capacitor in the substrate, at least one FET in the substrate disposed over at least a portion of the at least one deep trench capacitor, and at least one isolation region in the substrate surrounding the at least one FET and having a greater depth than the at least one FET. The at least one FET includes a gate disposed over at least a portion of the at least one deep trench capacitor and doped regions arranged on adjacent sides of the gate and separated from the gate by an insulating layer.
摘要:
Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
摘要:
Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
摘要:
Hybrid substrates characterized by semiconductor islands of different crystal orientations and methods of forming such hybrid substrates. The methods involve using a SIMOX process to form an insulating layer. The insulating layer may divide the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
摘要:
Design structure embodied in a machine readable medium for designing, manufacturing, or testing a design in which the design structure includes devices formed in a hybrid substrate characterized by semiconductor islands of different crystal orientations. An insulating layer divides the islands of at least one of the different crystal orientations into mutually aligned device and body regions. The body regions may be electrically floating relative to the device regions.
摘要:
A well isolation trenches for a CMOS device and the method for forming the same. The CMOS device includes (a) a semiconductor substrate, (b) a P well and an N well in the semiconductor substrate, (c) a well isolation region sandwiched between and in direct physical contact with the P well and the N well. The P well comprises a first shallow trench isolation (STI) region, and the N well comprises a second STI region. A bottom surface of the well isolation region is at a lower level than bottom surfaces of the first and second STI regions. When going from top to bottom of the well isolation region, an area of a horizontal cross section of the well isolation region is an essentially continuous function.
摘要:
A well isolation trenches for a CMOS device and the method for forming the same. The CMOS device includes (a) a semiconductor substrate, (b) a P well and an N well in the semiconductor substrate, (c) a well isolation region sandwiched between and in direct physical contact with the P well and the N well. The P well comprises a first shallow trench isolation (STI) region, and the N well comprises a second STI region. A bottom surface of the well isolation region is at a lower level than bottom surfaces of the first and second STI regions. When going from top to bottom of the well isolation region, an area of a horizontal cross section of the well isolation region is an essentially continuous function.
摘要:
Semiconductor methods and device structures for suppressing latch-up in bulk CMOS devices. The method comprises forming a trench in the semiconductor material of the substrate with first sidewalls disposed between a pair of doped wells, also defined in the semiconductor material of the substrate. The method further comprises forming an etch mask in the trench to partially mask the base of the trench, followed by removing the semiconductor material of the substrate exposed across the partially masked base to define narrowed second sidewalls that deepen the trench. The deepened trench is filled with a dielectric material to define a trench isolation region for devices built in the doped wells. The dielectric material filling the deepened extension of the trench enhances latch-up suppression.
摘要:
Semiconductor methods and device structures for suppressing latch-up in bulk CMOS devices. The method comprises forming a trench in the semiconductor material of the substrate with first sidewalls disposed between a pair of doped wells, also defined in the semiconductor material of the substrate. The method further comprises forming an etch mask in the trench to partially mask the base of the trench, followed by removing the semiconductor material of the substrate exposed across the partially masked base to define narrowed second sidewalls that deepen the trench. The deepened trench is filled with a dielectric material to define a trench isolation region for devices built in the doped wells. The dielectric material filling the deepened extension of the trench enhances latch-up suppression.