摘要:
Preferred embodiments of the invention implement techniques for modifying the command trajectory, the architecture of a servomechanism control system, or both, to reduce the servo error during and/or after the command trajectory. An iterative refinement procedure generates for use by the servomechanism control system a corrective input, du, which significantly reduces the error between the desired and actual servomechanism control system outputs. In one embodiment, a uniquely identified plant model is employed in the iterative refinement procedure to compute an approximate gradient that improves the performance and reliability of the refinement procedure. In another embodiment, the actual plant response is used in place of the identified model in the iterative refinement procedure. This is accomplished by time-reversing the stored error signal from a training run, before applying it to the plant to generate an update to the corrective input signal du.
摘要:
Preferred embodiments of the invention implement techniques for modifying the command trajectory, the architecture of a servomechanism control system, or both, to reduce the servo error during and/or after the command trajectory. An iterative refinement procedure generates for use by the servomechanism control system a corrective input, du, which significantly reduces the error between the desired and actual servomechanism control system outputs. In one embodiment, a uniquely identified plant model is employed in the iterative refinement procedure to compute an approximate gradient that improves the performance and reliability of the refinement procedure. In another embodiment, the actual plant response is used in place of the identified model in the iterative refinement procedure. This is accomplished by time-reversing the stored error signal from a training run, before applying it to the plant to generate an update to the corrective input signal du.
摘要:
The invention is a method and apparatus for laser marking a stainless steel specimen with commercially desirable marks. The method includes providing a laser processing system having a laser, laser optics and a controller with pre-determined laser pulse parameters, selecting the pre-determined laser pulse parameters associated with the desired mark, and directing the laser marking system to produce laser pulses having laser pulse parameters associated with the desired marks including temporal pulse widths greater than about 1 and less than about 1000 picoseconds.
摘要:
An apparatus and method performing a sequence of processing steps on a load supported by a processing plate. The load can include a single sheet on which a plurality of applications are performed or can include a plurality of panels on which respective applications are performed. For each application, at least one coarse target and at least one panel target are used to adjust the programmed coordinates for that application. After the first application of the load is processed using the coarse and panel targets, coarse and panel targets are located for the second application. Using the alignment provided by these targets, the second application is processed. Each subsequent application is similarly aligned and processed.
摘要:
The invention is a method and apparatus for laser marking a stainless steel specimen with commercially desirable marks. The method includes providing a laser processing system having a laser, laser optics and a controller with pre-determined laser pulse parameters, selecting the pre-determined laser pulse parameters associated with the desired mark, and directing the laser marking system to produce laser pulses having laser pulse parameters associated with the desired marks including temporal pulse widths greater than about 1 and less than about 1000 picoseconds.
摘要:
An apparatus and method performing a sequence of processing steps on a load supported by a processing plate. The load can include a single sheet on which a plurality of applications are performed or can include a plurality of panels on which respective applications are performed. For each application, at least one coarse target and at least one panel target are used to adjust the programmed coordinates for that application. After the first application of the load is processed using the coarse and panel targets, coarse and panel targets are located for the second application. Using the alignment provided by these targets, the second application is processed. Each subsequent application is similarly aligned and processed.
摘要:
A method and apparatus to improve image quality in images captured via monochromatic cameras using multi-wavelength lighting. A contrast optimization algorithm determines which particular wavelength among those available is most suitable to maximize contrast. The quality of the image can be further improved through active noise cancellation by determining the lighting schemes that provide maximum and minimum contrast between a target and a background. The elimination of image texture data (i.e., noise) is then accomplished through pixel-by-pixel division of the maximum by the minimum contrast image. Alternatively, images obtained using at least two wavelengths can be algebraically combined for noise reduction. The resulting composite image can be fed into any known target identification algorithm.
摘要:
To better address these problems, one or more characteristics are measured from a work piece (28). The measurement information is used to select a preferred predetermined laser processing recipe from a lookup table. The laser processing recipe is then used to process the work piece (28). The lookup table of laser processing recipes can be established from theoretical calculations, from trial an error by an operator, from an automated systematic recipe variation process with post process testing, or from some combination of these or other methods. An automated process can also reduce operator errors and may store measurement values for convenient tracking of work piece characteristics.
摘要:
To better address these problems, one or more characteristics are measured from a work piece (28). The measurement information is used to select a preferred predetermined laser processing recipe from a lookup table. The laser processing recipe is then used to process the work piece (28). The lookup table of laser processing recipes can be established from theoretical calculations, from trial an error by an operator, from an automated systematic recipe variation process with post process testing, or from some combination of these or other methods. An automated process can also reduce operator errors and may store measurement values for convenient tracking of work piece characteristics.