Abstract:
An image processor system for a charge coupled device (CCD) or CMOS imaging system includes a correlated double sample and variable gain (CDSVGA) circuit for receiving data from a CCD system and an automatic gain control (AGC) circuit which first controls gain by adjusting said CCD system and then for yet a higher gain level makes gain adjustments in said CDSVGA circuit AND a digital gain circuit to produce a combined target gain level. A processing system for an imager device includes a camera system for producing an imager signal, a correlated double sample (CDS) circuit for receiving data from an imager, a variable gain amplifier (VGA), an analog-to-digital converter (ADC) coupled to said CDS circuit, a digital gain circuit (DGC) coupled to said ADC, and an automatic gain control (AGC) circuit coupled to said DGC for controlling the CDS circuit and the DGC. The processing circuitry includes an analog front end and a digital signal processing system for capturing full motion video and outputting a CCIR 601 4:2:2 YCrCb video data output for presentation on a user selected display.
Abstract:
A ratiometric transmit path architecture for communication systems and related methods are disclosed. This ratiometric transmit path architecture utilizes a single local oscillator signal and dividers to provide mixing signals for intermediate frequency (IF) mixing circuitry and feedback mixing circuitry, thereby eliminating the need for separate IF and radio frequency (RF) voltage controlled oscillators (VCOs) in prior solutions.
Abstract:
A method and apparatus for synthesizing high-frequency signals, such as wireless communication signals, includes a phase-locked loop (PLL) frequency synthesizer with a variable capacitance voltage controlled oscillator (VCO) that has a discretely variable capacitance in conjunction with a continuously variable capacitance. The discretely variable capacitance may provide coarse tuning adjustment of the variable capacitance to compensate for capacitor and inductor tolerances and to adjust the output frequency to be near the desired frequency output. The continuously variable capacitance may provide a fine tuning adjustment of the variable capacitance to focus the output frequency to match precisely the desired frequency output. During fine tuning adjustment, the PLL may be controlled by a plurality of analog control signals. The analog control signals may be derived by first generating a plurality of phase shifted signals from a divided version of the VCO output clock. Second, the phase differences between the plurality of phase shifted signals and a divided version of a reference clock may be detected and then converted to the analog control signals.
Abstract:
An image processor system for a charge coupled device (CCD) or CMOS imaging system includes a histogram-based automatic gain control (AGC) circuit which first controls gain by adjusting said CCD system and then for yet a higher gain level makes gain adjustments in said CDSVGA circuit and a digital gain circuit to produce a combined target gain level. A processing system for an imager device includes a camera system for producing an imager signal, a correlated double sample (CDS) circuit for receiving data from an imager, a variable gain amplifier (VGA), an analog-to-digital converter (ADC) coupled to said CDS circuit, a digital gain circuit (DGC) coupled to said ADC, and an automatic gain control (AGC) circuit coupled to said DGC for controlling the CDS circuit and the DGC, as well as shutter timing for shutter gain.
Abstract:
Mixing circuitry for quadrature processing in communication systems and related methods are disclosed. The weighted mixing circuitry allows for arbitrary dividers to be utilized in generating the mixing signals for quadrature processing and thereby provides a significant advantage over prior architectures where 90 degree offset I and Q mixing signals were needed for quadrature mixing.
Abstract:
A method and apparatus is provided for reducing interference in circuits. A management strategy is provided to reduce reference spurs and interference in circuits. The management strategy uses a combination of one or more techniques which reduce the digital current, minimize mutual inductance, utilize field cancellation, prevent leakage current, and/or manage impedance. These techniques may be used alone, or preferably, used on combination with one another.
Abstract:
A method and apparatus is provided for reducing interference in circuits. A management strategy is provided to reduce reference spurs and interference in circuits. The management strategy uses a combination of one or more techniques which reduce the digital current, minimize mutual inductance, utilize field cancellation, prevent leakage current, and/or manage impedance. These techniques may be used alone, or preferably, used on combination with one another.
Abstract:
A method and apparatus is provided for reducing interference in circuits. A management strategy is provided to reduce reference spurs and interference in circuits. The management strategy uses a combination of one or more techniques which reduce the digital current, minimize mutual inductance, utilize field cancellation, prevent leakage current, and/or manage impedance. These techniques may be used alone, or preferably, used on combination with one another.
Abstract:
An image processor system for a charge coupled device (CCD) or CMOS imaging system includes a histogram-based automatic gain control (AGC) circuit which first controls gain by adjusting said CCD system and then for yet a higher gain level makes gain adjustments in said CDSVGA circuit and a digital gain circuit to produce a combined target gain level. A processing system for an imager device includes a camera system for producing an imager signal, a correlated double sample (CDS) circuit for receiving data from an imager, a variable gain amplifier (VGA), an analog-to-digital converter (ADC) coupled to said CDS circuit, a digital gain circuit (DGC) coupled to said ADC, and an automatic gain control (AGC) circuit coupled to said DGC for controlling the CDS circuit and the DGC, as well as shutter timing for shutter gain.
Abstract:
An image processor system for a charge coupled device (CCD) or CMOS imaging system includes a correlated double sample and variable gain (CDSVGA) circuit for receiving data from a CCD system and an automatic gain control (AGC) circuit which first controls gain by adjusting said CCD system and then for yet a higher gain level makes gain adjustments in said CDSVGA circuit AND a digital gain circuit to produce a combined target gain level. A processing system for an imager device includes a camera system for producing an imager signal, a correlated double sample (CDS) circuit for receiving data from an imager, a variable gain amplifier (VGA), an analog-to-digital converter (ADC) coupled to said CDS circuit, a digital gain circuit (DGC) coupled to said ADC, and an automatic gain control (AGC) circuit coupled to said DGC for controlling the CDS circuit and the DGC. The processing circuitry includes an analog front end and a digital signal processing system for capturing full motion video and outputting a CCIR 601 4:2:2 YCrCb video data output for presentation on a user selected display.