摘要:
Magnetoresistive devices are disclosed which include a changeable magnetic region within which at least two magnetic states can be imposed. Upon magnetoresistive electrical interaction with the device, the relative orientation of the magnetic states of the changeable magnetic region, and a proximate reference magnetic region, can be sensed thereby providing a binary data storage capability. The present invention limits the electrical interaction to only a preferred portion of the changeable magnetic region, e.g., the portion within which the two magnetic states can be dependably predicted to be substantially uniform, and opposite of one another. Structures for limiting the electrical interaction to this preferred portion of the changeable magnetic region are disclosed, and include smaller interaction regions, and alternating areas of insulation and conductive, interaction regions, disposed proximate the changeable magnetic region. The principles of the present invention can be applied to magnetic random access memory (“MRAM”) arrays, which employ giant magnetoresistive (“GMR”) cells, or magnetic tunnel junction (“MTJ”) cells, at the intersections of bitlines and wordlines, and also to magnetic sensors such as magnetic data storage devices having access elements used to access data on a magnetic data storage medium.
摘要:
Magnetoresistive devices are disclosed which include a changeable magnetic region within which at least two magnetic states can be imposed. Upon magnetoresistive electrical interaction with the device, the relative orientation of the magnetic states of the changeable magnetic region, and a proximate reference magnetic region, can be sensed thereby providing a binary data storage capability. The present invention limits the electrical interaction to only a preferred portion of the changeable magnetic region, e.g., the portion within which the two magnetic states can be dependably predicted to be substantially uniform, and opposite of one another. Structures for limiting the electrical interaction to this preferred portion of the changeable magnetic region are disclosed, and include smaller interaction regions, and alternating areas of insulation and conductive, interaction regions, disposed proximate the changeable magnetic region. The principles of the present invention can be applied to magnetic random access memory (“MRAM”) arrays, which employ giant magnetoresistive (“GMR”) cells, or magnetic tunnel junction (“MTJ”) cells, at the intersections of bitlines and wordlines, and also to magnetic sensors such as magnetic data storage devices having access elements used to access data on a magnetic data storage medium.
摘要:
Magnetic memory cells include a changeable magnetic region with a magnetic axis along which two directions of magnetization can be imposed, thereby providing two respective states into which the cells are changeable according to electrical and resultant magnetic stimuli applied thereto. Asymmetry in the magnetic stimuli applied to the cell while writing a state therein is disclosed to provide a predictable magnetization pattern evolution from the first direction to the second direction. Physical asymmetry in the layout and/or magnetization of the cell is also disclosed which provides the predictable pattern evolution. These principles can be applied to magnetic random access memory (MRAM) arrays which employ magnetic tunnel junction (MTJ) cells at the intersections of bitlines and wordlines which supply the electrical and resultant magnetic stimuli to write the cells therein.
摘要:
Magnetic memory devices are disclosed having multiple magnetic tunnel junctions therein writable together into an average state. For example, a magnetic random access memory ("MRAM") array is disclosed having respective pluralities of crossing first and second electrically conductive lines forming a plurality of intersecting regions across the array. The array includes a plurality of magnetic memory cells, each disposed at a respective one of the plurality of intersecting regions. Each cell includes at least two magnetic tunnel junctions therein, writable together into an average state, according to electrical and resultant magnetic stimuli applied thereto via a respective first and second conductive line. The at least two magnetic tunnel junctions provided in each magnetic memory cell provide a predictable magnetic response for all cells across the array. Only the cell at an intersecting region selected by stimuli applied via each of the first and second electrically conductive lines forming the selected region is written, and other cells along the first and second electrically conductive lines forming the selected region are not written. An operating window of applied electrical and therefore magnetic stimuli can be defined to ensure cell selectivity across the memory array.
摘要:
Magnetic memory cells include a changeable magnetic region with a magnetic axis along which two directions of magnetization can be imposed, thereby providing two respective states into which the cells are changeable according to electrical and resultant magnetic stimuli applied thereto. Asymmetry in the magnetic stimuli applied to the cell while writing a state therein is disclosed to provide a predictable magnetization pattern evolution from the first direction to the second direction. Physical asymmetry in the layout and/or magnetization of the cell is also disclosed which provides the predictable pattern evolution. These principles can be applied to magnetic random access memory (MRAM) arrays which employ magnetic tunnel junction (MTJ) cells at the intersections of bitlines and wordlines which supply the electrical and resultant magnetic stimuli to write the cells therein.
摘要:
A magnetic tunnel junction (MTJ) device has sufficiently small area to make it commercially practical as both a magnetic memory cell and a magnetoresistive read head. The small area magnetic tunnel junction device has both low resistance and high magnetoresistance. The magnetic tunnel junction device is made possible by the use of a thin aluminum layer in a thickness range of approximately 5-12 Angstroms. The Al layer is completely oxidized, without oxidizing the adjacent ferromagnetic layers, to form the insulating tunnel barrier layer of the MTJ.
摘要:
A nonvolatile magnetic random access memory (MRAM) is an array of individual magnetic memory cells. Each memory cell is a magnetic tunnel junction (MTJ) element and a diode electrically connected in series. Each MTJ is formed of a pinned ferromagnetic layer whose magnetization direction is prevented from rotating, a free ferromagnetic layer whose magnetization direction is free to rotate between states of parallel and antiparallel to the fixed magnetization of the pinned ferromagnetic layer, and an insulating tunnel barrier between and in contact with the two ferromagnetic layers. Each memory cell has a high resistance that is achieved in a very small surface area by controlling the thickness, and thus the electrical barrier height, of the tunnel barrier layer. The memory cells in the array are controlled by only two lines, and the write currents to change the magnetic state of an MTJ, by use of the write currents' inherent magnetic fields to rotate the magnetization of the free layer, do not pass through the tunnel barrier layer. All MTJ elements, diodes, and contacts are vertically arranged at the intersection regions of the two lines and between the two lines to minimize the total MRAM surface area. The power expended to read or sense the memory cell's magnetic state is reduced by the high resistance of the MTJ and by directing the sensing current through a single memory cell.
摘要:
A nonvolatile memory array includes a substrate, a first plurality of electrically conductive traces formed on the substrate, a second plurality of electrically conductive traces formed on the substrate and overlapping the first plurality of traces at a plurality of intersection regions, and a plurality of memory cells formed on the substrate. Each memory cell is located at an intersection region between one of the first plurality of traces and one of the second plurality of traces and includes a bidirectionally conducting nonlinear resistance selection device and a magneto-resistive element electrically coupled in series with the selection device. The array is biased during a read operation by biasing a selected trace of a first plurality of electrically conductive traces at a first bias potential. All other traces of the first plurality of conductive traces are biased at a second bias potential. A selected trace of a second plurality of conductive traces is biased at a third bias potential. Lastly, all other traces of the second plurality of conductive traces are biased at the first bias potential.
摘要:
A method for selectively etching insulative material composed of SrTiO3 or MgO in the presence of a copper oxide perovskite superconductive material includes treating the insulative material with a liquid selective etchant solution containing hydrogen fluoride in water for a period of time, the insulative material being etched at a substantially faster rate than the superconductive material etch rate, then treating the superconductive material exposed to the insulative selective with another etchant to remove a surface layer.
摘要:
Techniques for data storage are provided. In one aspect, a method for writing one or more magnetic memory cells comprises the following steps. Data is written to one or more of the magnetic memory cells. It is detected whether there are any errors in the data written to the one or more magnetic memory cells. The data is rewritten to each of the one or more previously written magnetic memory cells in which an error is detected.