摘要:
An article having a substrate is protected by a thermal barrier coating system. An interfacial layer contacts the upper surface of the substrate. The interfacial layer may comprise a bond coat only, or a bond coat and an overlay coat. The interfacial layer has on its upper surface a preselected, controllable pattern of three-dimensional features, such as grooves in a parallel array or in two angularly offset arrays. The features are formed by an ablation process using an ultraviolet laser such as an excimer laser. A ceramic thermal barrier coating is deposited over the pattern of features on the upper surface of the interfacial layer.
摘要:
An electron beam physical vapor deposition (EBPVD) apparatus and a method for using the apparatus to produce a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber that is operable at elevated temperatures and subatmospheric pressures. An electron beam gun projects an electron beam into the coating chamber and onto a coating material within the chamber, causing the coating material to melt and evaporate. An article is supported within the coating chamber so that vapors of the coating material deposit on the article. The operation of the EBPVD apparatus is enhanced by the inclusion of a crucible that supports the coating material and is configured to be efficiently cooled so as to reduce the rate at which the process temperature increases within the coating chamber.
摘要:
An electron beam physical vapor deposition (EBPVD) apparatus and a method for using the apparatus to produce a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber that is operable at elevated temperatures and subatmospheric pressures. An electron beam gun projects an electron beam into the coating chamber and onto a coating material within the chamber, causing the coating material to melt and evaporate. An article is supported within the coating chamber so that vapors of the coating material deposit on the article. The operation of the EBPVD apparatus is enhanced by the inclusion or adaptation of one or more mechanical and/or process modifications, including those necessary or beneficial when operating the apparatus at coating pressures above 0.010 mbar.
摘要:
An electron beam physical vapor deposition (EBPVD) apparatus for producing a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber that is operable at elevated temperatures and subatmospheric pressures. An electron beam gun projects an electron beam into the coating chamber through an aperture in a wall of the chamber and onto a coating material within a coating region defined within the chamber, causing the coating material to melt and evaporate. An article is supported within the coating chamber so that vapors of the coating material deposit on the article. The operation of the EBPVD apparatus is enhanced by the inclusion within the coating chamber of a second chamber that encloses the aperture so as to separate the aperture from the coating region. The second chamber is maintained at a pressure lower than the coating region.
摘要:
Coated superalloy article includes a bond coat comprising an inner bond coat layer disposed on the first surface being formed by deposition of a bond coat composition comprising, in weight percent, 14-20% Cr, 5-8% Al, 8-12% Co, 3-7% Ta, 0.1-0.6% Hf, 0.1-0.5% Y, up to about 1% Si, 0.005-0.020% Zr, 0.04-0.08% C, 0.01-0.02% B, with a remainder including nickel (Ni) and incidental impurities, wherein the bond coating composition is substantially free of rhenium. An aluminum-containing layer overlies the inner bond coat layer. Optionally, a thermal barrier coating overlies the aluminum-containing layer, wherein the thermal barrier coating, if present, is formed by deposition of a thermal barrier coating composition.
摘要:
Coating system for a metallic substrate includes a strengthened bond coat including a bond coat inner layer and an aluminum-containing layer overlying the bond coat inner layer. The bond coat inner layer is formed by deposition of a bond coat composition including, in weight percent, 14-20% Cr, 5-8% Al, 8-12% Co, 3-7% Ta, 0.1-0.6% Hf, 0.1-0.5% Y, up to about 1% Si, 0.005-0.020% Zr, 0.04-0.08% C, 0.01-0.02% B, with a remainder including Ni and incidental impurities, wherein the bond coat composition is substantially free of rhenium. The coating system includes an optional thermal barrier coating which may be a yttria-stabilized zirconia.
摘要:
Methods for coating a substrate includes depositing on the substrate, a inner bond coat layer of a bond coat composition comprising, in weight percent, 14-20% Cr, 5-8% Al, 8-12% Co, 3-7% Ta, 0.1-0.6% Hf, 0.1-0.5% Y, up to about 1% Si, 0.005-0.020% Zr, 0.04-0.08% C, 0.01-0.02% B, with a remainder including nickel (Ni) and incidental impurities, wherein the bond coat composition is substantially free of rhenium; forming an aluminum-containing layer overlying the inner bond coat layer; and, optionally, depositing a thermal barrier coating composition overlying the aluminum-containing layer.
摘要:
A thermal barrier coating (TBC 26) and method for forming the TBC (26) on a component (10) characterized by a stabilized microstructure that resists grain growth, sintering and pore coarsening or coalescence during high temperature excursions. The TBC (26) contains elemental carbon and/or a carbon-containing gas that increase the amount of porosity (32) initially within the TBC (26) and form additional fine closed porosity (32) within the TBC (26) during subsequent exposures to high temperatures. A first method involves incorporating elemental carbon precipitates by evaporation into the TBC microstructure. A second method is to directly incorporate an insoluble gas, such as a carbon-containing gas, into an as-deposited TBC (26) and then partially sinter the TBC (26) to entrap the gas and produce fine stable porosity within the TBC (26).
摘要:
Turbine airfoil components with protective layers and methods therefore. The components are each formed to have a platform, an airfoil extending upwardly from the platform, and a shank extending downwardly from the platform. The shank has an exterior wall and an internal passage, and the airfoil has a cooling flow channel inside the airfoil for flowing a cooling flow therethrough. The component has an interior chromide coating contacting at least a portion of an interior surface of the shank and interdiffused with a base metal thereof, and an exterior chromide coating contacting at least a portion of an exterior surface of the shank and interdiffused with the base metal thereof. The interior and exterior chromide coatings do not have an aluminide coating deposited thereon.
摘要:
A gas turbine component for use in a gas turbine engine includes a substrate and a non-aluminide protective coating with a platinum-group metal. The platinum-group metal resides in a gamma-prime phase of the underlying material. The platinum-group metal can impart the protective coating with superior corrosion-resistance, while the absence of aluminide in the protective coating facilitates use of the protective coating at high-stress and/or high-fatigue portions of the component. The protective coating optionally includes chromide and can also be combined with aluminide at select portions of the component.