摘要:
Processes for making a catalytic system and catalytic systems for converting solid biomass into fuel or specialty chemical products, or for upgrading bio-oils are described. The catalyst system may comprise a non-zeolitic matrix with a hierarchical pore structure ranging from 300 to about 104 Angstrom pore size, a zeolite, such as MFI-type or IM-5 zeolite, and a binder.
摘要:
Catalyst compositions comprising a phosphorous-promoted ZSM-5 component and a silica-containing binder, and methods for making and using same, are disclosed. More specifically, processes for making a catalyst for biomass conversion are provided. The process includes: treating a ZSM-5 zeolite with a phosphorous-containing compound to form a phosphorous-promoted ZSM-5 component; preparing a slurry comprising the phosphorous-promoted ZSM-5 component and a silica-containing binder; and shaping the slurry into shaped bodies. Such catalysts can be used for the thermocatalytic conversion of particulate biomass to liquid products such as bio-oil, resulting in higher bio-oil yields and lower coke than conventional catalysts.
摘要:
A process is described for pretreating lignocellulosic biomass. The process comprises swelling the lignocellulosic biomass with an aqueous liquid. The pretreated lignocellulosic biomass may be used as a feedstock for the enzymatic conversion to ethanol, or in a thermal conversion. process to produce bio-oil. The pretreatment results in a greater yield and, in the case of a thermal conversion process, a better quality of the bio-oil. The pretreatment process may be used to adjust the composition and amount of inorganic material present in the lignocellulosic biomass material.
摘要:
A process is disclosed for converting a biomass material to a stabilized bio-oil. The process comprises converting the biomass to a pyrolytic oil having suspended therein particles of metal compounds, and removing at least part of the suspended metal compounds to obtain a stabilized bio-oil.
摘要:
Process for the preparation of an additive-containing anionic clay comprising the steps of (a) milling a physical mixture of a divalent metal compound and a trivalent metal compound, (b) calcining the physical mixture at a temperature in the range 200-800° C., and (c) rehydrating the calcined mixture in aqueous suspension, wherein an additive is present in the physical mixture and/or the aqueous suspension of step (c). With this process additive-containing anionic clays with a homogeneous additive distribution can be prepared.
摘要:
The present invention provides new compositions of matter, referred to as quasi-crystalline carboxylates (QCCs), their preparation and use. The materials comprise a quasi-crystalline hydrated magnesium-aluminium hydroxy carboxylate and are characterised by the presence of at least a strong reflection in the powder X-ray diffraction pattern at a basal spacing in the range of 5 to 15 Å. The invention further relates to a process for preparing the QCCs, Mg—Al solid solutions and anionic clays under acidic conditions. The QCC is prepared by aging an acidic mixture of a magnesium carboxylate and an aluminium source. Calcination of the QCC results in a Mg—Al solid solution; rehydration of this solid solution gives an anionic clay.
摘要:
An economical and environment-friendly processes for the synthesis of anionic clays and the products made therefrom. It involves reacting a slurry comprising non-peptized boehmite with a magnesium source. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products that contain anionic clays.
摘要:
A method for reducing the mechanical strength of solid biomass material, in particular lignocellulosic biomass, comprises mixing the solid biomass material with an inorganic material and heating the solid biomass material mixture to a toasting temperature in the range of 105° C. to 140° C. during an exposure time of from 1 minute to 12 hours. Before or after the heat treatment, which is referred to as “toasting”, the biomass material mixture is subject to flash heating. The treatment significantly reduces the mechanical energy required for reducing the particle size of the solid biomass material and is suitable as a pretreatment prior to a conversion reaction of the solid biomass material.
摘要:
Aspects of the present invention relate to methods, systems, and compositions for preparing a solid biomass for fast pyrolysis. The method includes contacting the solid biomass with an inorganic material present in an effective amount for increasing fast pyrolysis yield of an organic liquid product (e.g., bio-oil). In various embodiments, the inorganic material is selected from the group consisting of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, ammonium hydroxide, magnesium hydroxide, potassium hydroxide, and combinations thereof.
摘要:
A process is disclosed for converting a particulate solid biomass material to a high quality bio-oil in high yield. The process comprises a pretreatment step and a pyrolysis step. The pretreatment comprises a step of at least partially demineralizing the solid biomass, and improving the accessibility of the solid biomass by opening the texture of the particles of the solid biomass. In a preferred embodiment the liquid pyrolysis product is separated into the bio-oil and an aqueous phase, and the aqueous phase is used as a solvent in the demineralization step and/or in the step of improving the accessibility of the solid biomass by opening the texture of the particles of the solid biomass.