摘要:
A method of manufacturing a tubular carbon molecule capable of regularly aligning a carbon nanotube with a finer spacing is provided. A catalyst is arranged on a material substrate (10) made of a semiconductor such as silicon (Si) and including iron (Fe) as a catalyst through the use of melting according to a modulated heat distribution (11). The heat distribution (11) is formed, for example, through diffracting an energy beam (12) by a diffraction grating (13). As a method of arranging the catalyst, for example, iron may be deposited in a planar shape or a projection shape in a position corresponding to the heat distribution (11), or the deposited iron may be used as a master to be transferred to another substrate. A carbon nanotube is grown through the use of the arranged catalyst. The grown carbon nanotube can be used as a recording apparatus, a field electron emission device, an FED or the like.
摘要:
A method of manufacturing a tubular carbon molecule capable of regularly aligning a carbon nanotube with a finer spacing is provided. A catalyst is arranged on a material substrate (10) made of a semiconductor such as silicon (Si) and including iron (Fe) as a catalyst through the use of melting according to a modulated heat distribution (11). The heat distribution (11) is formed, for example, through diffracting an energy beam (12) by a diffraction grating (13). As a method of arranging the catalyst, for example, iron may be deposited in a planar shape or a projection shape in a position corresponding to the heat distribution (11), or the deposited iron may be used as a master to be transferred to another substrate. A carbon nanotube is grown through the use of the arranged catalyst. The grown carbon nanotube can be used as a recording apparatus, a field electron emission device, an FED or the like.
摘要:
A method of manufacturing a tubular carbon molecule capable of regularly aligning a carbon nanotube with a finer spacing is provided. A catalyst is arranged on a material substrate (10) made of a semiconductor such as silicon (Si) and including iron (Fe) as a catalyst through the use of melting according to a modulated heat distribution (11). The heat distribution (11) is formed, for example, through diffracting an energy beam (12) by a diffraction grating (13). As a method of arranging the catalyst, for example, iron may be deposited in a planar shape or a projection shape in a position corresponding to the heat distribution (11), or the deposited iron may be used as a master to be transferred to another substrate. A carbon nanotube is grown through the use of the arranged catalyst. The grown carbon nanotube can be used as a recording apparatus, a field electron emission device, an FED or the like.
摘要:
A method of manufacturing a tubular carbon molecule capable of regularly aligning a carbon nanotube with a finer spacing is provided. A catalyst is arranged on a material substrate (10) made of a semiconductor such as silicon (Si) and including iron (Fe) as a catalyst through the use of melting according to a modulated heat distribution (11). The heat distribution (11) is formed, for example, through diffracting an energy beam (12) by a diffraction grating (13). As a method of arranging the catalyst, for example, iron may be deposited in a planar shape or a projection shape in a position corresponding to the heat distribution (11), or the deposited iron may be used as a master to be transferred to another substrate. A carbon nanotube is grown through the use of the arranged catalyst. The grown carbon nanotube can be used as a recording apparatus, a field electron emission device, an FED or the like.
摘要:
Reflux systems and methods for purifying carbon nanostructures using same are provided. The reflux system includes a solvent flask, an extraction tube connected to the solvent flask by a siphon tube and a vapor tube each extending between the extraction tube and the solvent flask, and an energy application disposed around the bottom portion of the extraction tube. The reflux systems can be used in a one-step method of purifying carbon nanostructures that includes placing a soot sample that contains the carbon nanostructures and amorphous carbon in a filter and disposing the filter in the extraction tube.
摘要:
The present invention relates to a gas pressure regulator including an electrochemical cell (4) having a first electrode (1) for decomposing gas into ions, a second electrode (2) for converting the ions generated in the first electrode (1) into the gas again and an ion conductor (3) sandwiched in between both the electrodes (1) and (2); and a high pressure vessel (5) disposed in one side of the electrochemical cell (4). In this device, the gas is decomposed into the ions in the first electrode (1). The decomposed ions are allowed to pass through the ion conductor (3) sandwiched in between the first electrode (1) and the second electrode (2) and conducted to the second electrode (2) side. The conducted ions are reconverted into the gas in the second electrode (2).
摘要:
A manufacturing method of carbon nanotubes capable of mass-producing DWCNT with high throughput and a low defect incidence ratio is provided. In a vacuum chamber (1), a first electrode (2) having a hollow (2a) and a rod-like second electrode (3) are included. Inert gas such as helium gas, nitrogen gas, and argon gas is introduced into the vacuum chamber (1), the atmosphere not containing hydrogen gas and oxygen gas is created, and in this state, arc discharge is generated between the first electrode (2) and the second electrode (3). The heat generated by arc discharge is moderately stored on the surface of the inner side surrounded by the first electrode (2), and temperatures on the surface of the first electrode (2) are maintained at the temperatures suitable for producing the DWCNT (8). Thereby, the thready DWCNT (8) can be continuously produced without pause starting with a catalyst (6).
摘要:
Methods and devices for producing fullerene are provided. The present invention includes a pair of electrodes spaced apart to define a region wherein an arc discharge can be conducted between the electrode pair and a gas containing carbon can be supplied to the region such that fullerene can be easily and readily produced.
摘要:
A hydrogen-stored carbonaceous material is provided. The present invention relates to a hydrogen-stored carbonaceous material obtained by storing hydrogen in a carbonaceous material heated at more than about 230° C. under pressure in a reducing atmosphere, a battery and a fuel cell using same. The carbonaceous material is heated at more than about 230° C. under pressure in a reducing atmosphere so that its surface can be efficiently cleaned and an area where the surface of the carbonaceous material comes into contact with hydrogen atoms or hydrogen molecules is increased.
摘要:
A microelectronic device and a method for producing the device can overcome the disadvantages of known electronic devices composed of carbon molecules, and can deliver performance superior to the known devices. An insulated-gate field-effect transistor includes a multi-walled carbon nanotube (10) having an outer semiconductive carbon nanotube layer (1) and an inner metallic carbon nanotube layer (2) that is partially covered by the outer semiconductive carbon nanotube layer (1). A metal source electrode (3) and a metal drain electrode (5) are brought into contact with both ends of the semiconductive carbon nanotube layer (1) while a metal gate electrode (4) is brought into contact with the metallic carbon nanotube layer (2). The space between the semiconductive carbon nanotube layer (1) and the metallic carbon nanotube layer (2) is used as a gate insulating layer. Two layers including the outer semiconductive carbon nanotube layer (1) and the inner metallic carbon nanotube layer (2) are selected from carbon nanotube layers of a multi-walled carbon nanotube. These layers are processed into a form suitable for use as the multi-walled carbon nanotube (10).