摘要:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
摘要:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
摘要:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
摘要:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
摘要:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
摘要:
A manufacturing method for a crystalline semiconductor material including a plurality of semiconductor crystal grains is provided. The manufacturing method includes forming an amorphous or polycrystalline semiconductor layer on a substrate having a flat surface; forming a plurality of projections each having a side wall surface substantially perpendicular to the flat surface of the substrate, a height set in the range of about 1 nm to less than or equal to about ¼ of the thickness of the semiconductor layer, and a lateral dimension set in the range of about 3 μm to about 18 μm in a direction parallel to the flat surface of the substrate; and heating the semiconductor layer a number of times by using a pulsed laser thereby forming the crystalline semiconductor material including the crystal grains each having a specific plane orientation with respect to a direction perpendicular to the flat surface of the substrate so that the crystal grains respectively correspond to the projections. Accordingly, the position, size, and plane orientation of a crystal can be controlled by a simple step, and a crystalline semiconductor material excellent in planarity as a film can be formed.
摘要:
A manufacturing method for a crystalline semiconductor material including a plurality of semiconductor crystal grains is provided. The manufacturing method includes forming an amorphous or polycrystalline semiconductor layer on a substrate having a flat surface; forming a plurality of projections each having a side wall surface substantially perpendicular to the flat surface of the substrate, a height set in the range of about 1 nm to less than or equal to about ¼ of the thickness of the semiconductor layer, and a lateral dimension set in the range of about 3 μm to about 18 μm in a direction parallel to the flat surface of the substrate; and heating the semiconductor layer a number of times by using a pulsed laser thereby forming the crystalline semiconductor material including the crystal grains each having a specific plane orientation with respect to a direction perpendicular to the flat surface of the substrate so that the crystal grains respectively correspond to the projections. Accordingly, the position, size, and plane orientation of a crystal can be controlled by a simple step, and a crystalline semiconductor material excellent in planarity as a film can be formed.
摘要:
A manufacturing method for a crystalline semiconductor material including a plurality of semiconductor crystal grains is provided. The manufacturing method includes forming an amorphous or polycrystalline semiconductor layer on a substrate having a flat surface; forming a plurality of projections each having a side wall surface substantially perpendicular to the flat surface of the substrate, a height set in the range of about 1 nm to less than or equal to about ¼ of the thickness of the semiconductor layer, and a lateral dimension set in the range of about 3 μm to about 18 μm in a direction parallel to the flat surface of the substrate; and heating the semiconductor layer a number of times by using a pulsed laser thereby forming the crystalline semiconductor material including the crystal grains each having a specific plane orientation with respect to a direction perpendicular to the flat surface of the substrate so that the crystal grains respectively correspond to the projections. Accordingly, the position, size, and plane orientation of a crystal can be controlled by a simple step, and a crystalline semiconductor material excellent in planarity as a film can be formed.
摘要:
A manufacturing method for a crystalline semiconductor material including a plurality of semiconductor crystal grains is provided. The manufacturing method includes forming an amorphous or polycrystalline semiconductor layer on a substrate having a flat surface; forming a plurality of projections each having a side wall surface substantially perpendicular to the flat surface of the substrate, a height set in the range of about 1 nm to less than or equal to about ¼ of the thickness of the semiconductor layer, and a lateral dimension set in the range of about 3 μm to about 18 μm in a direction parallel to the flat surface of the substrate; and heating the semiconductor layer a number of times by using a pulsed laser thereby forming the crystalline semiconductor material including the crystal grains each having a specific plane orientation with respect to a direction perpendicular to the flat surface of the substrate so that the crystal grains respectively correspond to the projections. Accordingly, the position, size, and plane orientation of a crystal can be controlled by a simple step, and a crystalline semiconductor material excellent in planarity as a film can be formed.
摘要:
A dial plate structure includes first and second dial plates and a rotary indicator. The first dial plate has a first opening or a first cutout. The second dial plate is arranged under the first dial plate and has a plurality of function display portions exposed through the opening or the cutout. The rotary indicator is arranged between the first and second dial plates and has a function indicator to selectively indicate one of the function display portions by rotation. The rotary indicator is partially exposed through the opening or the cutout. The rotary indicator has, on the surface thereof, a plurality of index markers respectively corresponding to the function display portions. The first dial plate has a second opening or a second cutout to expose one of the index markers when the function indicator indicates one of the function display portions corresponding to the indicated function display portion.