摘要:
A method and structure for fabricating a laser fuse and a method for programming the laser fuse. The laser fuse includes a first dielectric layer having two vias filled with a first self-passivated electrically conducting material. A fuse link is on top of the first dielectric layer. The fuse link electrically connects the two vias and includes a second material having a characteristic of changing its electrical resistance after being exposed to a laser beam. Two mesas are over the fuse link and directly over the two vias. The two mesas each include a third self-passivated electrically conducting material. The laser fuse is programmed by directing a laser beam to the fuse link. The laser beam is controlled such that, in response to the impact of the laser beam upon the fuse link, the electrical resistance of the fuse link changes but the fuse link is not blown off. Such electrical resistance change is sensed and converted to digital signal.
摘要:
A method for programming a laser fuse. The laser fuse has a fuse link including a material having a characteristic of changing its electrical resistance after being exposed to a laser beam. The laser beam is directed to the fuse link, the laser beam being controlled such that, in response to the impact of the laser beam upon the fuse link, the electrical resistance of the fuse link changes but the fuse link is not blown off.
摘要:
A method for programming a laser fuse. The laser fuse has a fuse link including a material having a characteristic of changing its electrical resistance after being exposed to a laser beam. The laser beam is directed to the fuse link, the laser beam being controlled such that, in response to the impact of the laser beam upon the fuse link, the electrical resistance of the fuse link changes but the fuse link is not blown off.
摘要:
A method and structure for fabricating a laser fuse and a method for programming the laser fuse. The laser fuse includes a dielectric layer having two vias filled with a first self-passivated electrically conducting material. A fuse link is on top of the dielectric layer. The fuse link electrically connects the two vias and includes a second material having a characteristic of changing its electrical resistance after being exposed to a laser beam. Two mesas are over the fuse link and directly over the two vias. The two mesas each include a third self-passivated electrically conducting material. The laser fuse is programmed by directing a laser beam to the fuse link. The laser beam is controlled such that, in response to the impact of the laser beam upon the fuse link, the electrical resistance of the fuse link changes but the fuse link is not blown off. Such electrical resistance change is sensed and converted to digital signal.
摘要:
A structure and a method for operating the same. The method comprises providing a resistive/reflective region on a substrate, wherein the resistive/reflective region comprises a material having a characteristic of changing the material's reflectance due to the material absorbing heat; sending an electric current through the resistive/reflective region so as to cause a reflectance change in the resistive/reflective region from a first reflectance value to a second reflectance value different from the first reflectance value; and optically reading the reflectance change in the resistive/reflective region.
摘要:
A structure and method are disclosed for heat dissipation relative to a heat generating element in a semiconductor device. The structure includes a plurality of heat transmitting lines partially vertically coincidental with the heat generating element, and at least one interconnecting path from each heat transmitting line to a substrate of the semiconductor device. In one embodiment, the heat generating element includes a resistor in a non-first metal level. The invention is compatible with conventional BEOL interconnect schemes, minimizes the amount of heat transfer from the resistor to the surrounding interconnect wiring, thus eliminating the loss of current carrying capability in the wiring.
摘要:
A structure representative of a conductive interconnect of a microelectronic element is provided, which may include a conductive metallic plate having an upper surface, a lower surface, and a plurality of peripheral edges extending between the upper and lower surfaces, the upper surface defining a horizontally extending plane. The structure may also include a lower via having a top end in conductive communication with the metallic plate and a bottom end vertically displaced from the top end. A lower conductive or semiconductive element can be in contact with the bottom end of the lower via. An upper metallic via can lie in at least substantial vertical alignment with the lower conductive via, the upper metallic via having a bottom end in conductive communication with the metallic plate and a top end vertically displaced from the bottom end. The upper metallic via may have a width at least about ten times than the length of the metallic plate and about ten times smaller than the width of the metallic plate. The structure may further include an upper metallic line element in contact with the top end of the upper metallic via.
摘要:
A structure representative of a conductive interconnect of a microelectronic element is provided, which may include a conductive metallic plate having an upper surface, a lower surface, and a plurality of peripheral edges extending between the upper and lower surfaces, the upper surface defining a horizontally extending plane. The structure may also include a lower via having a top end in conductive communication with the metallic plate and a bottom end vertically displaced from the top end. A lower conductive or semiconductive element can be in contact with the bottom end of the lower via. An upper metallic via can lie in at least substantial vertical alignment with the lower conductive via, the upper metallic via having a bottom end in conductive communication with the metallic plate and a top end vertically displaced from the bottom end. The upper metallic via may have a width at least about ten times than the length of the metallic plate and about ten times smaller than the width of the metallic plate. The structure may further include an upper metallic line element in contact with the top end of the upper metallic via.
摘要:
A microelectronic element such as a chip or microelectronic wiring substrate is provided which includes a plurality of conductive interconnects for improved resistance to thermal stress. At least some of the conductive interconnects include a metallic plate, a metallic connecting line and an upper metallic via. The metallic connecting line has an upper surface at least substantially level with an upper surface of the metallic plate, an inner end connected to the metallic plate at one of the peripheral edges, and an outer end horizontally displaced from the one peripheral edge. The metallic connecting line has a width much smaller than the width of the one peripheral edge of the metallic plate and has length greater than the width of the one peripheral edge. The upper metallic via has a bottom end in contact with the metallic connecting line at a location that is horizontally displaced from the one peripheral edge by at least about 3 microns (μm).
摘要:
A microelectronic element such as a chip or microelectronic wiring substrate is provided which includes a plurality of conductive interconnects for improved resistance to thermal stress. At least some of the conductive interconnects include a metallic plate, a metallic connecting line and an upper metallic via. The metallic connecting line has an upper surface at least substantially level with an upper surface of the metallic plate, an inner end connected to the metallic plate at one of the peripheral edges, and an outer end horizontally displaced from the one peripheral edge. The metallic connecting line has a width much smaller than the width of the one peripheral edge of the metallic plate and has length greater than the width of the one peripheral edge. The upper metallic via has a bottom end in contact with the metallic connecting line at a location that is horizontally displaced from the one peripheral edge by at least about 3 microns (μm).