摘要:
A structure and method are disclosed for heat dissipation relative to a heat generating element in a semiconductor device. The structure includes a plurality of heat transmitting lines partially vertically coincidental with the heat generating element, and at least one interconnecting path from each heat transmitting line to a substrate of the semiconductor device. In one embodiment, the heat generating element includes a resistor in a non-first metal level. The invention is compatible with conventional BEOL interconnect schemes, minimizes the amount of heat transfer from the resistor to the surrounding interconnect wiring, thus eliminating the loss of current carrying capability in the wiring.
摘要:
A microelectronic element such as a chip or microelectronic wiring substrate is provided which includes a plurality of conductive interconnects for improved resistance to thermal stress. At least some of the conductive interconnects include a metallic plate, a metallic connecting line and an upper metallic via. The metallic connecting line has an upper surface at least substantially level with an upper surface of the metallic plate, an inner end connected to the metallic plate at one of the peripheral edges, and an outer end horizontally displaced from the one peripheral edge. The metallic connecting line has a width much smaller than the width of the one peripheral edge of the metallic plate and has length greater than the width of the one peripheral edge. The upper metallic via has a bottom end in contact with the metallic connecting line at a location that is horizontally displaced from the one peripheral edge by at least about 3 microns (μm).
摘要:
A structure representative of a conductive interconnect of a microelectronic element is provided, which may include a conductive metallic plate having an upper surface, a lower surface, and a plurality of peripheral edges extending between the upper and lower surfaces, the upper surface defining a horizontally extending plane. The structure may also include a lower via having a top end in conductive communication with the metallic plate and a bottom end vertically displaced from the top end. A lower conductive or semiconductive element can be in contact with the bottom end of the lower via. An upper metallic via can lie in at least substantial vertical alignment with the lower conductive via, the upper metallic via having a bottom end in conductive communication with the metallic plate and a top end vertically displaced from the bottom end. The upper metallic via may have a width at least about ten times than the length of the metallic plate and about ten times smaller than the width of the metallic plate. The structure may further include an upper metallic line element in contact with the top end of the upper metallic via.
摘要:
A structure representative of a conductive interconnect of a microelectronic element is provided, which may include a conductive metallic plate having an upper surface, a lower surface, and a plurality of peripheral edges extending between the upper and lower surfaces, the upper surface defining a horizontally extending plane. The structure may also include a lower via having a top end in conductive communication with the metallic plate and a bottom end vertically displaced from the top end. A lower conductive or semiconductive element can be in contact with the bottom end of the lower via. An upper metallic via can lie in at least substantial vertical alignment with the lower conductive via, the upper metallic via having a bottom end in conductive communication with the metallic plate and a top end vertically displaced from the bottom end. The upper metallic via may have a width at least about ten times than the length of the metallic plate and about ten times smaller than the width of the metallic plate. The structure may further include an upper metallic line element in contact with the top end of the upper metallic via.
摘要:
A microelectronic element such as a chip or microelectronic wiring substrate is provided which includes a plurality of conductive interconnects for improved resistance to thermal stress. At least some of the conductive interconnects include a metallic plate, a metallic connecting line and an upper metallic via. The metallic connecting line has an upper surface at least substantially level with an upper surface of the metallic plate, an inner end connected to the metallic plate at one of the peripheral edges, and an outer end horizontally displaced from the one peripheral edge. The metallic connecting line has a width much smaller than the width of the one peripheral edge of the metallic plate and has length greater than the width of the one peripheral edge. The upper metallic via has a bottom end in contact with the metallic connecting line at a location that is horizontally displaced from the one peripheral edge by at least about 3 microns (μm).
摘要:
The present invention provides an interconnect structure that can be made in the BEOL which exhibits good mechanical contact during normal chip operations and does not fail during various reliability tests as compared with the conventional interconnect structures described above. The inventive interconnect structure has a kinked interface at the bottom of a via that is located within an interlayer dielectric layer. Specifically, the inventive interconnect structure includes a first dielectric layer having at least one metallic interconnect embedded within a surface thereof; a second dielectric layer located atop the first dielectric layer, wherein said second dielectric layer has at least one aperture having an upper line region and a lower via region, wherein the lower via region includes a kinked interface; at least one pair of liners located on at least vertical walls of the at least one aperture; and a conductive material filling the at least one aperture.
摘要:
A transistor device and method of forming the same comprises a substrate; a first gate electrode over the substrate; a second gate electrode over the substrate; and a landing pad comprising a pair of flanged ends overlapping the second gate electrode, wherein the structure of the second gate electrode is discontinuous with the structure of the landing pad.
摘要:
A method of forming a stochastically based integrated circuit encryption structure includes forming a lower conductive layer over a substrate, forming a short prevention layer over the lower conductive layer, forming an intermediate layer over the short prevention layer, wherein the intermediate layer is characterized by randomly structured nanopore features. An upper conductive layer is formed over the random nanopore structured intermediate layer. The upper conductive layer is patterned into an array of individual cells, wherein a measurable electrical parameter of the individual cells has a random distribution from cell to cell with respect to a reference value of the electrical parameter.
摘要:
An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx- or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
摘要翻译:一种互连结构,其中上层低k介电材料(例如包含Si,C,O和H的元素的材料)与下面的扩散覆盖电介质(例如包含C,Si元素的材料)之间的粘合 通过在两个电介质层之间引入粘附过渡层来改善N和H。 在上层低k电介质和扩散阻挡覆盖电介质之间的粘附过渡层的存在可以减少在包装过程中互连结构的分层的可能性。 本文提供的粘合过渡层包括含低级SiO x - 或SiON的区域和上C级分区域。 还提供了形成这种结构,特别是粘附过渡层的方法。
摘要:
A magnetic domain wall memory apparatus with write/read capability includes a plurality of coplanar shift register structures each comprising an elongated track formed from a ferromagnetic material having a plurality of magnetic domains therein, the shift register structures further having a plurality of discontinuities therein to facilitate domain wall location; a magnetic read element associated with each of the shift register structures; and a magnetic write element associated with each of the shift register structures, the magnetic write element further comprising a single write wire having a longitudinal axis substantially orthogonal to a longitudinal axis of each of the coplanar shift register structures.